DNA-nanostructure-templated assembly of planar and curved lipid-bilayer membranes

被引:1
|
作者
Elbahnasawy, Mostafa A. [1 ]
Nasr, Mahmoud L. [2 ]
机构
[1] Al Azhar Univ, Fac Sci, Bot & Microbiol Dept, Immunol Lab, Cairo, Egypt
[2] Harvard Med Sch, Brigham & Womens Hosp, Dept Med, Renal Div & Engn Med Div, Boston, MA 02115 USA
来源
FRONTIERS IN CHEMISTRY | 2023年 / 10卷
基金
美国国家卫生研究院;
关键词
DNA nanostructures; liposomes; DNA-corralled nanodiscs; DNA origami; nanodiscs; membrane proteins; viral entry; RHODOBACTER-SPHAEROIDES; FOLDING DNA; ORIGAMI; PROTEIN; NANODISCS; LIPOSOMES; CHANNEL; RECONSTITUTION; POLIOVIRUS; RESOLUTION;
D O I
10.3389/fchem.2022.1047874
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Lipid-bilayer nanodiscs and liposomes have been developed to stabilize membrane proteins in order to study their structures and functions. Nanodiscs are detergent-free, water-soluble, and size-controlled planar phospholipid-bilayer platforms. On the other hand, liposomes are curved phospholipid-bilayer spheres with an aqueous core used as drug delivery systems and model membrane platforms for studying cellular activities. A long-standing challenge is the generation of a homogenous and monodispersed lipid-bilayer system with a very wide range of dimensions and curvatures (elongation, bending, and twisting). A DNA-origami template provides a way to control the shapes, sizes, and arrangements of lipid bilayers via enforcing the assembly of lipid bilayers within the cavities created by DNA nanostructures. Here, we provide a concise overview and discuss how to design planar and curved lipid-bilayer membranes by using DNA-origami nanostructures as templates. Finally, we will discuss the potential applications of DNA-origami nanostructures in the structural and functional studies of large membrane proteins and their complexes.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] DIFFUSION AND PATCHING OF MACROMOLECULES ON PLANAR LIPID BILAYER MEMBRANES
    WOLF, DE
    SCHLESSINGER, J
    ELSON, EL
    WEBB, WW
    BLUMENTHAL, R
    HENKART, P
    BIOCHEMISTRY, 1977, 16 (15) : 3476 - 3483
  • [22] Investigation on the Voltammetric Behaviors in Planar Bilayer Lipid Membranes
    Ding Lin
    Wang Erkang
    ACTA PHYSICO-CHIMICA SINICA, 1997, 13 (04) : 362 - 365
  • [23] ANALYSIS OF TORUS SURROUNDING PLANAR LIPID BILAYER MEMBRANES
    WHITE, SH
    BIOPHYSICAL JOURNAL, 1972, 12 (04) : 432 - &
  • [24] Curved Lipid Bilayer Membranes : Protein Motions and Hydrodynamic Transport
    Atzberger, Paul J.
    BIOPHYSICAL JOURNAL, 2016, 110 (03) : 243A - 243A
  • [25] α-Synuclein interactions with phospholipid model membranes: Key roles for electrostatic interactions and lipid-bilayer structure
    Pirc, Katja
    Ulrih, Natasa Poklar
    BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES, 2015, 1848 (10): : 2002 - 2012
  • [26] DNA Nanostructures Interacting with Lipid Bilayer Membranes
    Langecker, Martin
    Arnaut, Vera
    List, Jonathan
    Simmel, Friedrich C.
    ACCOUNTS OF CHEMICAL RESEARCH, 2014, 47 (06) : 1807 - 1815
  • [27] Antimicrobial Nanotubes Consisting of Ag-Embedded Peptidic Lipid-Bilayer Membranes as Delivery Vehicles
    Zhou, Yong
    Kogiso, Masaki
    Asakawa, Masumi
    Dong, Sijun
    Kiyama, Ryoiti
    Shimizu, Toshimi
    ADVANCED MATERIALS, 2009, 21 (17) : 1742 - +
  • [28] Templated Assembly of Pore-forming Peptides in Lipid Membranes
    Fennouri, Aziz
    List, Jonathan
    Dupasquier, Jessica
    Haeni, Laetitia
    Vanni, Stefano
    Rothen-Rutishauser, Barbara
    Mayer, Michael
    CHIMIA, 2019, 73 (1-2) : 59 - 62
  • [29] INTERACTION OF HASHISH COMPOUNDS WITH PLANAR LIPID BILAYER MEMBRANES (BLM)
    BACH, D
    RAZ, A
    GOLDMAN, R
    BIOCHEMICAL PHARMACOLOGY, 1976, 25 (11) : 1241 - 1244
  • [30] Are ion channels distributed randomly in a planar lipid bilayer membranes?
    Krasilnikov, OV
    Merzliak, PG
    Yuldasheva, LN
    Nogueira, RA
    Rodrigues, CG
    PROGRESS IN BIOPHYSICS & MOLECULAR BIOLOGY, 1996, 65 : PC336 - PC336