Pulse electrodeposition synthesis of Ti/PbO2-IrO2 nano-composite electrode to restrict the OER in the zinc electrowinning

被引:15
作者
Hakimi, F. [1 ,2 ]
Ghalkhani, M. [1 ]
Rashchi, F. [2 ]
Dolati, A. [3 ]
机构
[1] Shahid Rajaee Teacher Training Univ, Fac Sci, Dept Chem, Tehran, Iran
[2] Univ Tehran, Coll Engn, Sch Met & Mat Engn, Tehran, Iran
[3] Sharif Univ Technol, Dept Mat Sci & Engn, Tehran, Iran
来源
JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING | 2024年 / 12卷 / 02期
关键词
Lead dioxide; Iridium dioxide; Oxygen evolution reduction; Nanoparticles; Zinc electrowinning; OXYGEN EVOLUTION REACTION; SIZE-SELECTIVE ELECTRODEPOSITION; MESOSCALE METAL PARTICLES; NANOCOMPOSITE ELECTRODES; CURRENT-DENSITY; ANODE; NANOPARTICLES; PERFORMANCE; BEHAVIOR; IRO2;
D O I
10.1016/j.jece.2024.111985
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Pulsed and constant direct current electrodepositions were applied to synthesize PbO2-IrO2 nano-composites on Ti substrate. By compositing PbO2 with nano-sized IrO2 particles, a suitable anode was prepared for zinc electrowinning that decreases the electrocatalytic activity for oxygen evolution reaction overpotential (OER) while increasing the electrochemical active surface area and the electrocatalytic activity for OER. To provide PbO2-IrO2 nano-composites on Ti substrate with Sb2O3 interlayer, current density, temperature, and time of anodization are optimized using the one-at-the-time method. The optimal condition for the anode involves a DC time of 1 h, incorporating 2 g L-1 of IrO2 nanoparticles, maintaining a current density of 50 mA cm(-2) for the DC mode, and setting the pulse off-time (t(off)) to 770 ms. Based on the electrochemical evaluations in a simulated zinc electrowinning electrolyte, the effect of IrO2 nanoparticles on the catalytic activity of Ti/beta-PbO2 anode for OER was determined. Anodic polarization curves showed that the OER overpotential of PbO2-IrO2 micro-composite and PbO2-IrO2 nano-composites at a current density of 10 mA cm(-2) decreased to 0.471 V, respectively, compared to 0.711 V for pure PbO2. The Nyquist plots in the OER zone confirm that the PbO2-IrO2 nano-composite anode exhibits the lowest Rct 2.79 O compared to 6.0 O and 9.46 O for PbO2-IrO2 micro-composite and pure PbO2, which can be attributed to the presence of electro-catalytic IrO2 nanoparticles.
引用
收藏
页数:13
相关论文
共 78 条
[31]   Size-selective electrodeposition of meso-scale metal particles: a general method [J].
Liu, H ;
Favier, F ;
Ng, K ;
Zach, MP ;
Penner, RM .
ELECTROCHIMICA ACTA, 2001, 47 (05) :671-677
[32]   Size-selective electrodeposition of mesoscale metal particles in the uncoupled limit [J].
Liu, H ;
Penner, RM .
JOURNAL OF PHYSICAL CHEMISTRY B, 2000, 104 (39) :9131-9139
[33]   Electrodeposition of composite coatings containing nanoparticles in a metal deposit [J].
Low, C. T. J. ;
Wills, R. G. A. ;
Walsh, F. C. .
SURFACE & COATINGS TECHNOLOGY, 2006, 201 (1-2) :371-383
[34]   Oxygen evolution reaction on Ni-substituted Co3O4 nanowire array electrodes [J].
Lu, Bangan ;
Cao, Dianxue ;
Wang, Pan ;
Wang, Guiling ;
Gao, Yinyi .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2011, 36 (01) :72-78
[35]   SATURATION NUCLEUS DENSITY IN ELECTRODEPOSITION OF METALS ONTO INERT ELECTRODES .2. EXPERIMENTAL [J].
MARKOV, I ;
STOYCHEVA, E .
THIN SOLID FILMS, 1976, 35 (01) :21-35
[36]   Nanoparticles of IrO2 or Sb-SnO2 increase the performance of iridium oxide DSA electrodes [J].
Marshall, Aaron T. ;
Haverkamp, Richard G. .
JOURNAL OF MATERIALS SCIENCE, 2012, 47 (03) :1135-1141
[37]   A GALVANOSTATIC STUDY OF ELECTROCHEMICAL NUCLEATION [J].
MILCHEV, A ;
MONTENEGRO, MI .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1992, 333 (1-2) :93-102
[38]  
Mohammadi M., 2016, Univ. Br. Columbia, V5, P76
[39]   Behavior of cobalt oxide electrodes during oxidative processes in alkaline medium [J].
Palmas, S. ;
Ferrara, F. ;
Vacca, A. ;
Mascia, M. ;
Polcaro, A. M. .
ELECTROCHIMICA ACTA, 2007, 53 (02) :400-406
[40]   Ternary IrO2-Pt-Ni deposits prepared by galvanic replacement as bifunctional oxygen catalysts [J].
Papaderakis, Athanasios ;
Matouli, Ioanna ;
Spyridou, Olga Niki ;
Grammenos, Anastasios Orestis ;
Banti, Angeliki ;
Touni, Aikaterini ;
Pliatsikas, Nikolaos ;
Patsalas, Panagiotis ;
Sotiropoulos, Sotiris .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2020, 877 (877)