Setting the misinformation agenda: Modeling COVID-19 narratives in Twitter communities

被引:4
作者
Unlu, Ali [1 ,2 ,4 ]
Truong, Sophie [2 ]
Sawhney, Nitin [3 ]
Tammi, Tuukka [1 ]
机构
[1] Finnish Inst Hlth & Welf THL, Helsinki, Finland
[2] Aalto Univ, Espoo, Finland
[3] Aalto Univ, Dept Comp Sci, Espoo, Finland
[4] Finnish Inst Hlth & Welf THL, Cultural Behav & Media Insights Ctr CUBE, Mannerheimintie 166, FI-00271 Helsinki, Finland
基金
芬兰科学院;
关键词
Agenda-setting; community detection; COVID-19; Finland; misinformation; topic modeling; SOCIAL MEDIA; ISSUE-ATTENTION; BIG DATA; DYNAMICS; LEADS; NEWS;
D O I
10.1177/14614448241232079
中图分类号
G2 [信息与知识传播];
学科分类号
05 ; 0503 ;
摘要
This research investigates the dynamics of COVID-19 misinformation spread on Twitter within the unique context of Finland. Employing cutting-edge methodologies including text classification, topic modeling, social network analysis, and correspondence analysis (CA), the study analyzes 1.6 million Finnish tweets from December 2019 to October 2022. Misinformation tweets are identified through text classification and grouped into topics using BERTopic modeling. Applying the Leiden algorithm, the analysis uncovers retweet and mention networks, delineating distinct communities within each. CA determines these communities' topical focuses, revealing how various groups prioritized different misinformation narratives throughout the pandemic. The findings demonstrate that influential, diverse communities introduce new misinformation, which then spreads to niche groups. This agenda-setting effect is amplified by social media algorithms optimized for engagement. The results provide valuable insights into how online communities shape public discourse during crises through the strategic dissemination of misinformation.
引用
收藏
页码:3973 / 3997
页数:25
相关论文
共 71 条
[41]   Online misinformation is linked to early COVID-19 vaccination hesitancy and refusal [J].
Pierri, Francesco ;
Perry, Brea L. ;
DeVerna, Matthew R. ;
Yang, Kai-Cheng ;
Flammini, Alessandro ;
Menczer, Filippo ;
Bryden, John .
SCIENTIFIC REPORTS, 2022, 12 (01)
[42]  
Pontoh AK., 2022, INT C EMERGING MEDIA, V31, P469, DOI [10.15405/epsbs.2022.01.02.39, DOI 10.15405/EPSBS.2022.01.02.39]
[43]  
Porter Mason A., 2009, Notices of the American Mathematical Society, V56, P1082
[44]   Infodemic Signal Detection During the COVID-19 Pandemic: Development of a Methodology for Identifying Potential Information Voids in Online Conversations [J].
Purnat, Tina D. ;
Vacca, Paolo ;
Czerniak, Christine ;
Ball, Sarah ;
Burzo, Stefano ;
Zecchin, Tim ;
Wright, Amy ;
Bezbaruah, Supriya ;
Tanggol, Faizza ;
Dube, Eve ;
Labbe, Fabienne ;
Dionne, Maude ;
Lamichhane, Jaya ;
Mahajan, Avichal ;
Briand, Sylvie ;
Nguyen, Tim .
JMIR INFODEMIOLOGY, 2021, 1 (01)
[45]   Big Data, Computational Social Science, and Health Communication: A Review and Agenda for Advancing Theory [J].
Rains, Stephen A. .
HEALTH COMMUNICATION, 2020, 35 (01) :26-34
[46]   The Twitter pandemic: The critical role of Twitter in the dissemination of medical information and misinformation during the COVID-19 pandemic [J].
Rosenberg, Hans ;
Syed, Shahbaz ;
Rezaie, Salim .
CANADIAN JOURNAL OF EMERGENCY MEDICINE, 2020, 22 (04) :418-421
[47]   A Framework for the Interaction of Active Audiences and Influencers on Twitter: The Case of Zika Virus [J].
Shakeri, Shadi .
JOURNAL OF INFORMATION & KNOWLEDGE MANAGEMENT, 2020, 19 (04)
[48]   A minimalistic model of bias, polarization and misinformation in social networks [J].
Sikder, Orowa ;
Smith, Robert E. ;
Vivo, Pierpaolo ;
Livan, Giacomo .
SCIENTIFIC REPORTS, 2020, 10 (01)
[49]   Agenda-Setting Dynamics during COVID-19: Who Leads and Who Follows? [J].
Skestere, Lasma ;
Dargis, Roberts .
SOCIAL SCIENCES-BASEL, 2022, 11 (12)
[50]  
Sousa D., 2010, P 2 INT WORKSH SEARC, P63, DOI [10.1145/1871985.1871996, DOI 10.1145/1871985.1871996]