Orbital stability of the trains of peaked solitary waves for the modified Camassa-Holm-Novikov equation

被引:2
作者
Luo, Ting [1 ]
机构
[1] Zhejiang Normal Univ, Sch Math Sci, Jinhua 321004, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
orbital stability; modified Camassa-Holm-Novikov equation; shallow water equation; multi-peakons; CAUCHY-PROBLEM; PEAKONS;
D O I
10.1515/anona-2023-0124
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Consideration herein is the stability issue of peaked solitary wave solution for the modified Camassa-Holm-Novikov equation, which is derived from the shallow water theory. This wave configuration accommodates the ordered trains of the modified Camassa-Holm-Novikov-peaked solitary solution. With the application of conservation laws and the monotonicity property of the localized energy functionals, we prove the orbital stability of this wave profile in the H-1(R) energy space according to the modulation argument.
引用
收藏
页数:30
相关论文
共 31 条
[1]   AN INTEGRABLE SHALLOW-WATER EQUATION WITH PEAKED SOLITONS [J].
CAMASSA, R ;
HOLM, DD .
PHYSICAL REVIEW LETTERS, 1993, 71 (11) :1661-1664
[2]  
CAMASSA R, 1994, ADV APPL MECH, V31, P1, DOI DOI 10.1016/S0065-2156(08)70254-0
[3]  
Cao C.S., 2004, J. Dynam. Differential. Equations., V16, P167
[4]   The Shallow-Water Models with Cubic Nonlinearity [J].
Chen, Robin Ming ;
Hu, Tianqiao ;
Liu, Yue .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2022, 24 (02)
[5]   Stability of Peaked Solitary Waves for a Class of Cubic Quasilinear Shallow-Water Equations [J].
Chen, Robin Ming ;
Di, Huafei ;
Liu, Yue .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2023, 2023 (07) :6186-6218
[6]   A Rigidity Property for the Novikov Equation and the Asymptotic Stability of Peakons [J].
Chen, Robin Ming ;
Lian, Wei ;
Wang, Dehua ;
Xu, Runzhang .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2021, 241 (01) :497-533
[7]   The trajectories of particles in Stokes waves [J].
Constantin, Adrian .
INVENTIONES MATHEMATICAE, 2006, 166 (03) :523-535
[8]   Analyticity of periodic traveling free surface water waves with vorticity [J].
Constantin, Adrian ;
Escher, Joachim .
ANNALS OF MATHEMATICS, 2011, 173 (01) :559-568
[9]   Stability of multipeakons [J].
El Dika, Khaled ;
Molinet, Luc .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2009, 26 (04) :1517-1532
[10]   SYMPLECTIC STRUCTURES, THEIR BACKLUND-TRANSFORMATIONS AND HEREDITARY SYMMETRIES [J].
FUCHSSTEINER, B ;
FOKAS, AS .
PHYSICA D, 1981, 4 (01) :47-66