Explainable machine learning using echocardiography to improve risk prediction in patients with chronic coronary syndrome

被引:5
作者
Molenaar, Mitchel A. [1 ,2 ]
Bouma, Berto J. [1 ,2 ]
Asselbergs, Folkert W. [1 ,3 ,4 ]
Verouden, Niels J. [1 ,2 ]
Selder, Jasper L. [1 ,2 ]
Chamuleau, Steven A. J. [1 ,2 ]
Schuuring, Mark J. [1 ,5 ,6 ]
机构
[1] Univ Amsterdam, Amsterdam Univ Med Ctr, Dept Cardiol, Amsterdam, Netherlands
[2] Amsterdam Univ Med Ctr, Amsterdam Cardiovasc Sci, Amsterdam, Netherlands
[3] UCL, Hlth Data Res UK, London, England
[4] UCL, Inst Hlth Informat, London, England
[5] Univ Med Ctr Utrecht, Dept Cardiol, Circulatory Hlth Lab, Utrecht, Netherlands
[6] Circulatory Hlth UMC Utrecht, Utrecht, Netherlands
来源
EUROPEAN HEART JOURNAL - DIGITAL HEALTH | 2024年 / 5卷 / 02期
关键词
Coronary artery disease; Machine learning; Artificial intelligence; Prognosis; Risk; Mortality; CHAMBER QUANTIFICATION; EUROPEAN ASSOCIATION; ARTERY-DISEASE; HEART; RECOMMENDATIONS; UPDATE; CARE;
D O I
10.1093/ehjdh/ztae001
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Aims The European Society of Cardiology guidelines recommend risk stratification with limited clinical parameters such as left ventricular (LV) function in patients with chronic coronary syndrome (CCS). Machine learning (ML) methods enable an analysis of complex datasets including transthoracic echocardiography (TTE) studies. We aimed to evaluate the accuracy of ML using clinical and TTE data to predict all-cause 5-year mortality in patients with CCS and to compare its performance with traditional risk stratification scores.Methods and results Data of consecutive patients with CCS were retrospectively collected if they attended the outpatient clinic of Amsterdam UMC location AMC between 2015 and 2017 and had a TTE assessment of the LV function. An eXtreme Gradient Boosting (XGBoost) model was trained to predict all-cause 5-year mortality. The performance of this ML model was evaluated using data from the Amsterdam UMC location VUmc and compared with the reference standard of traditional risk scores. A total of 1253 patients (775 training set and 478 testing set) were included, of which 176 patients (105 training set and 71 testing set) died during the 5-year follow-up period. The ML model demonstrated a superior performance [area under the receiver operating characteristic curve (AUC) 0.79] compared with traditional risk stratification tools (AUC 0.62-0.76) and showed good external performance. The most important TTE risk predictors included in the ML model were LV dysfunction and significant tricuspid regurgitation.Conclusion This study demonstrates that an explainable ML model using TTE and clinical data can accurately identify high-risk CCS patients, with a prognostic value superior to traditional risk scores. Graphical Abstract CCS, chronic coronary syndrome; eGFR, estimated glomerular filtration rate; LV, left ventricular; TTE, transthoracic echocardiography.
引用
收藏
页码:170 / 182
页数:13
相关论文
共 33 条
[1]   A Boosted Ensemble Algorithm for Determination of Plaque Stability in High-Risk Patients on Coronary CTA [J].
Al'Aref, Subhi J. ;
Singh, Gurpreet ;
Choi, Jeong W. ;
Xu, Zhuoran ;
Maliakal, Gabriel ;
van Rosendael, Alexander R. ;
Lee, Benjamin C. ;
Fatima, Zahra ;
Andreini, Daniele ;
Bax, Jeroen J. ;
Cademartiri, Filippo ;
Chinnaiyan, Kavitha ;
Chow, Benjamin J. W. ;
Conte, Edoardo ;
Cury, Ricardo C. ;
Feuchtner, Gudruf ;
Hadamitzky, Martin ;
Kim, Yong-Jin ;
Lee, Sang-Eun ;
Leipsic, Jonathon A. ;
Maffei, Erica ;
Marques, Hugo ;
Plank, Fabian ;
Pontone, Gianluca ;
Raff, Gilbert L. ;
Villines, Todd C. ;
Weirich, Harald G. ;
Cho, Iksung ;
Danad, Ibrahim ;
Han, Donghee ;
Heo, Ran ;
Lee, Ji Hyun ;
Rizvi, Asim ;
Stuijfzand, Wijnand J. ;
Gransar, Heidi ;
Lu, Yao ;
Sung, Ji Min ;
Park, Hyung-Bok ;
Berman, Daniel S. ;
Budoff, Matthew J. ;
Samady, Habib ;
Stone, Peter H. ;
Virmani, Renu ;
Narula, Jagat ;
Chang, Hyuk-Jae ;
Lin, Fay Y. ;
Baskaran, Lohendran ;
Shaw, Leslee J. ;
Min, James K. .
JACC-CARDIOVASCULAR IMAGING, 2020, 13 (10) :2162-2173
[2]   Waist-to-Height Ratio Is More Predictive of Years of Life Lost than Body Mass Index [J].
Ashwell, Margaret ;
Mayhew, Les ;
Richardson, Jon ;
Rickayzen, Ben .
PLOS ONE, 2014, 9 (09)
[3]  
Baumgartner H, 2018, EUR HEART J, V39, P1980, DOI [10.1093/eurheartj/ehx636, 10.1093/eurheartj/ehx391]
[4]   External validation is necessary in, prediction research: A clinical example [J].
Bleeker, SE ;
Moll, HA ;
Steyerberg, EW ;
Donders, ART ;
Derksen-Lubsen, G ;
Grobbee, DE ;
Moons, KGM .
JOURNAL OF CLINICAL EPIDEMIOLOGY, 2003, 56 (09) :826-832
[5]   Appropriate use criteria for echocardiography in the Netherlands [J].
Bouma, B. J. ;
Riezenbos, R. ;
Voogel, A. J. ;
Veldhorst, M. H. ;
Jaarsma, W. ;
Hrudova, J. ;
Cernohorsky, B. ;
Chamuleau, S. ;
van den Brink, R. B. A. ;
Breedveld, R. ;
Reichert, C. ;
Kamp, O. ;
Braam, R. ;
van Melle, J. P. .
NETHERLANDS HEART JOURNAL, 2017, 25 (05) :330-334
[6]   Ratio of waist circumference to height is better predictor of death than body mass index [J].
Cox, BD ;
Whichelow, MJ .
BRITISH MEDICAL JOURNAL, 1996, 313 (7070) :1487-1487
[7]  
COX DR, 1972, J R STAT SOC B, V34, P187
[8]   General cardiovascular risk profile for use in primary care - The Framingham Heart Study [J].
D'Agostino, Ralph B. ;
Vasan, Ramachandran S. ;
Pencina, Michael J. ;
Wolf, Philip A. ;
Cobain, Mark ;
Massaro, Joseph M. ;
Kannel, William B. .
CIRCULATION, 2008, 117 (06) :743-753
[9]   SCORE2-OP risk prediction algorithms: estimating incident cardiovascular event risk in older persons in four geographical risk regions [J].
de Vries, Tamar, I ;
Cooney, Marie Therese ;
Selmer, Randi M. ;
Hageman, Steven H. J. ;
Pennells, Lisa A. ;
Wood, Angela ;
Kaptoge, Stephen ;
Xu, Zhe ;
Westerink, Jan ;
Rabanal, Kjersti S. ;
Tell, Grethe S. ;
Meyer, Haakon E. ;
Igland, Jannicke ;
Ariansen, Inger ;
Matsushita, Kunihiro ;
Blaha, Michael J. ;
Nambi, Vijay ;
Peters, Ruth ;
Beckett, Nigel ;
Antikainen, Riitta ;
Bulpitt, Christopher J. ;
Muller, Majon ;
Emmelot-Vonk, Marielle H. ;
Trompet, Stella ;
Jukema, Wouter ;
Ference, Brian A. ;
Halle, Martin ;
Timmis, Adam D. ;
Vardas, Panos E. ;
Dorresteijn, Jannick A. N. ;
De Bacquer, Dirk ;
Di Angelantonio, Emanuele ;
Visseren, Frank L. J. ;
Graham, Ian M. .
EUROPEAN HEART JOURNAL, 2021, 42 (25) :2455-2467
[10]   COMPARING THE AREAS UNDER 2 OR MORE CORRELATED RECEIVER OPERATING CHARACTERISTIC CURVES - A NONPARAMETRIC APPROACH [J].
DELONG, ER ;
DELONG, DM ;
CLARKEPEARSON, DI .
BIOMETRICS, 1988, 44 (03) :837-845