Attention-Free Global Multiscale Fusion Network for Remote Sensing Object Detection

被引:43
作者
Gao, Tao [1 ]
Li, Ziqi [1 ]
Wen, Yuanbo [1 ]
Chen, Ting [1 ]
Niu, Qianqian [1 ]
Liu, Zixiang [1 ]
机构
[1] Changan Univ, Sch Informat Engn, Xian 710064, Peoples R China
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2024年 / 62卷
基金
中国国家自然科学基金;
关键词
Attention-free; multiscale object detection; remote sensing images (RSIs); semantic information; small object detection; FOCAL LOSS;
D O I
10.1109/TGRS.2023.3346041
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Remote sensing object detection (RSOD) encounters challenges in complex backgrounds and small object detection, which are interconnected and unable to address separately. To this end, we propose an attention-free global multiscale fusion network (AGMF-Net). Initially, we present a spatial bias module (SBM) to obtain long-range dependencies as a part of our proposal global information extraction module (GIEM). GIEM efficiently captures the global information, overcoming challenges posed by complex backgrounds. Moreover, we propose multitask enhanced structure (MES) and multitask feature pretreatment (MFP) to enhance the feature representation of multiscale targets, while eliminating the interference from complex backgrounds. In addition, an efficient context decoupled detector (ECDD) is presented to provide distinct features for regression and classification tasks, aiming to improve the efficiency of RSOD. Extensive experiments demonstrate that our proposed method achieves superior performance compared with the state-of-the-art detectors. Specifically, AGMF-Net obtains the mean average precision (mAP) of 73.2%, 92.03%, 95.21%, and 94.30% on detection in optical remote sensing images (DIOR), high resolution remote sensing detection (HRRSD), Northwestern Polytechnical University Very High Resolution-10 (NWPU VHR-10), and RSOD datasets, respectively.
引用
收藏
页码:1 / 14
页数:14
相关论文
共 84 条
[1]  
[Anonymous], 2023, YOLOv8
[2]  
[Anonymous], 2021, yolov5
[3]   Vision-based navigation and guidance for agricultural autonomous vehicles and robots: A review [J].
Bai, Yuhao ;
Zhang, Baohua ;
Xu, Naimin ;
Zhou, Jun ;
Shi, Jiayou ;
Diao, Zhihua .
COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2023, 205
[4]   Soft-NMS - Improving Object Detection With One Line of Code [J].
Bodla, Navaneeth ;
Singh, Bharat ;
Chellappa, Rama ;
Davis, Larry S. .
2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, :5562-5570
[5]   Cascade R-CNN: Delving into High Quality Object Detection [J].
Cai, Zhaowei ;
Vasconcelos, Nuno .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :6154-6162
[6]   High-Level Semantic Networks for Multi-Scale Object Detection [J].
Cao, Jiale ;
Pang, Yanwei ;
Zhao, Shengjie ;
Li, Xuelong .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2020, 30 (10) :3372-3386
[7]   End-to-End Object Detection with Transformers [J].
Carion, Nicolas ;
Massa, Francisco ;
Synnaeve, Gabriel ;
Usunier, Nicolas ;
Kirillov, Alexander ;
Zagoruyko, Sergey .
COMPUTER VISION - ECCV 2020, PT I, 2020, 12346 :213-229
[8]   Parallel Residual Bi-Fusion Feature Pyramid Network for Accurate Single-Shot Object Detection [J].
Chen, Ping-Yang ;
Chang, Ming-Ching ;
Hsieh, Jun-Wei ;
Chen, Yong-Sheng .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 :9099-9111
[9]   Disentangle Your Dense Object Detector [J].
Chen, Zehui ;
Yang, Chenhongyi ;
Li, Qiaofei ;
Zhao, Feng ;
Zha, Zheng-Jun ;
Wu, Feng .
PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2021, 2021, :4939-4948
[10]   Learning Rotation-Invariant Convolutional Neural Networks for Object Detection in VHR Optical Remote Sensing Images [J].
Cheng, Gong ;
Zhou, Peicheng ;
Han, Junwei .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (12) :7405-7415