Developed multi-objective honey badger optimizer: Application to optimize proton exchange membrane fuel cells-based combined cooling, heating, and power system

被引:16
作者
Chang, Le [1 ]
Li, Minghai [2 ]
Qian, Leren [3 ]
de Oliveira, Gabriel Gomes [4 ]
机构
[1] Zhejiang Univ Water Resources & Elect Power, Coll Civil Engn & Architecture, Hangzhou 310018, Zhejiang, Peoples R China
[2] Xian Univ Architecture & Technol, Sch Mech & Elect Engn, Xian 710055, Shaanxi, Peoples R China
[3] Arizona State Univ, Sch Comp & Augmented Intelligence, Tempe, AZ 85281 USA
[4] Univ Estadual Campinas, UNICAMP, Sao Paulo, Brazil
关键词
Combined cooling; Heating; And power (CCHP); Proton exchange membrane fuel cell; (PEM-Fuel cell); Multi-objective optimization; Improved honey badger optimizer; EVOLUTIONARY ALGORITHMS; OPTIMAL OPERATION; FORECAST ENGINE; CCHP; CONFIGURATION; STRATEGY; PEMFC; MODEL;
D O I
10.1016/j.ijhydene.2023.08.331
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Load managing and price optimizer are significant elements in triple models and combined cooling, heating, and power (CCHP) models. In this study, a new CCHP model utilizes a fuel cell as the main drive with a heat recovery system, a 5-kW PEMFC pile, a small immersion chiller, a humidifier, and a gas compressor is considered. The system has been assessed regards to environment, thermodynamics, and economics in terms of view. A developed type of Honey Badger Optimizer has been suggested to optimize the effectiveness of the model. The system productivity has been assessed by the exergy, energy, yearly price, and pollutant release decrease. According to model studies, low operating temperatures, high intake gas pressures, and high relative humidity all contribute to improved system efficiency and a reduction in greenhouse gas emissions. Based on simulation data, the electricity efficiency at the final optimized point is found to be 69.77%, which is a significant improvement over the baseline efficiency of 63.3% before optimization. Furthermore, the optimized system resulted in a yearly reduction of greenhouse gas emissions by 1.47e7 g, which represents a notable improvement over the 1.20e7 g reduction achieved by the standard system.(c) 2023 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:592 / 605
页数:14
相关论文
共 47 条
[1]   Extracting Appropriate Nodal Marginal Prices for All Types of Committed Reserve [J].
Akbary, Paria ;
Ghiasi, Mohammad ;
Pourkheranjani, Mohammad Reza Rezaie ;
Alipour, Hamidreza ;
Ghadimi, Noradin .
COMPUTATIONAL ECONOMICS, 2019, 53 (01) :1-26
[2]  
[Anonymous], 1985, PROC 1 INT C GENETIC
[3]   Honey badger optimizer for extracting the ungiven parameters of PEMFC model: Steady-state assessment [J].
Ashraf, Hossam ;
Abdellatif, Sameh O. ;
Elkholy, Mahmoud M. ;
El-Fergany, Attia A. .
ENERGY CONVERSION AND MANAGEMENT, 2022, 258
[4]   Thermodynamic analysis of a CCHP system for a building using solar collectors and PV panels in two different climate zones in Iran [J].
Bagheri, Hossein ;
Azimi, Aziz .
ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2024, 46 (01) :5685-5704
[5]  
Bagheri M, 2018, 2018 IEEE INTERNATIONAL CONFERENCE ON ENVIRONMENT AND ELECTRICAL ENGINEERING AND 2018 IEEE INDUSTRIAL AND COMMERCIAL POWER SYSTEMS EUROPE (EEEIC / I&CPS EUROPE)
[6]   Multi-objective scheduling of IoT-enabled smart homes for energy management based on Arithmetic Optimization Algorithm: A Node-RED and NodeMCU module-based technique [J].
Bahmanyar, Danial ;
Razmjooy, Navid ;
Mirjalili, Seyedali .
KNOWLEDGE-BASED SYSTEMS, 2022, 247
[7]   Optimal bidding and offering strategies of compressed air energy storage: A hybrid robust-stochastic approach [J].
Cai, Wei ;
Mohammaditab, Rasoul ;
Fathi, Gholamreza ;
Wakil, Karzan ;
Ebadi, Abdol Ghaffar ;
Ghadimi, Noradin .
RENEWABLE ENERGY, 2019, 143 :1-8
[8]   Multi-criteria assessment and optimization study on 5 kW PEMFC based residential CCHP system [J].
Chen, Xi ;
Zhou, Haowei ;
Li, Wenbin ;
Yu, Zhengkun ;
Gong, Guangcai ;
Yan, Yongtao ;
Luo, Liang ;
Wan, Zhongmin ;
Ding, Yuejiao .
ENERGY CONVERSION AND MANAGEMENT, 2018, 160 :384-395
[9]   Performance study of a dual power source residential CCHP system based on PEMFC and PTSC [J].
Chen, Xi ;
Gong, Guangcai ;
Wan, Zhongmin ;
Zhang, Caizhi ;
Tu, Zhengkai .
ENERGY CONVERSION AND MANAGEMENT, 2016, 119 :163-176
[10]  
Coello CAC, 2002, IEEE C EVOL COMPUTAT, P1051, DOI 10.1109/CEC.2002.1004388