Robust and sparse logistic regression

被引:0
|
作者
Cornilly, Dries [1 ,3 ]
Tubex, Lise [2 ]
Van Aelst, Stefan [1 ]
Verdonck, Tim [1 ,2 ]
机构
[1] Katholieke Univ Leuven, Dept Math, Celestijnenlaan 200B, B-3001 Leuven, Belgium
[2] Univ Antwerp, imec, Dept Math, Middelheimlaan 1, B-2020 Antwerp, Belgium
[3] Asteria IM, Rue Lausanne 15, CH-1202 Geneva, Switzerland
关键词
Elastic net; gamma-divergence; Logistic regression; Robustness; Sparsity; VARIABLE SELECTION; REGULARIZATION; MODEL;
D O I
10.1007/s11634-023-00572-4
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Logistic regression is one of the most popular statistical techniques for solving (binary) classification problems in various applications (e.g. credit scoring, cancer detection, ad click predictions and churn classification). Typically, the maximum likelihood estimator is used, which is very sensitive to outlying observations. In this paper, we propose a robust and sparse logistic regression estimator where robustness is achieved by means of the gamma-divergence. An elastic net penalty ensures sparsity in the regression coefficients such that the model is more stable and interpretable. We show that the influence function is bounded and demonstrate its robustness properties in simulations. The good performance of the proposed estimator is also illustrated in an empirical application that deals with classifying the type of fuel used by cars.
引用
收藏
页码:663 / 679
页数:17
相关论文
共 50 条
  • [21] Robust logistic regression with shift parameter estimation
    Shin, Bokyoung
    Lee, Seokho
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2023, 93 (15) : 2625 - 2641
  • [22] A sparse version of the ridge logistic regression for large-scale text categorization
    Aseervatham, Sujeevan
    Antoniadis, Anestis
    Gaussier, Eric
    Burlet, Michel
    Denneulin, Yves
    PATTERN RECOGNITION LETTERS, 2011, 32 (02) : 101 - 106
  • [23] ON GROUPING EFFECT OF SPARSE STABLE OUTLIER-ROBUST REGRESSION
    Suzuki, Kyohei
    Yukawa, Masahiro
    2022 IEEE 32ND INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2022,
  • [24] Robust functional logistic regression
    Akturk, Berkay
    Beyaztas, Ufuk
    Shang, Han Lin
    Mandal, Abhijit
    ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2024, : 121 - 145
  • [25] Robust polytomous logistic regression
    Miron, Julien
    Poilane, Benjamin
    Cantoni, Eva
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2022, 176
  • [26] Robust logistic zero-sum regression for microbiome compositional data
    Monti, G. S.
    Filzmoser, P.
    ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2022, 16 (02) : 301 - 324
  • [27] IMAGE SEGMENTATION USING SPARSE LOGISTIC REGRESSION WITH SPATIAL PRIOR
    Ruusuvuori, Pekka
    Manninen, Tapio
    Huttunen, Heikki
    2012 PROCEEDINGS OF THE 20TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2012, : 2253 - 2257
  • [28] Penalized principal logistic regression for sparse sufficient dimension reduction
    Shin, Seung Jun
    Artemiou, Andreas
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2017, 111 : 48 - 58
  • [29] BAYESIAN ERROR ESTIMATION AND MODEL SELECTION IN SPARSE LOGISTIC REGRESSION
    Huttunen, Heikki
    Manninen, Tapio
    Tohka, Jussi
    2013 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2013,
  • [30] On Data-Enriched Logistic Regression
    Zheng, Cheng
    Dasgupta, Sayan
    Xie, Yuxiang
    Haris, Asad
    Chen, Ying-Qing
    MATHEMATICS, 2025, 13 (03)