Robust and sparse logistic regression

被引:0
|
作者
Cornilly, Dries [1 ,3 ]
Tubex, Lise [2 ]
Van Aelst, Stefan [1 ]
Verdonck, Tim [1 ,2 ]
机构
[1] Katholieke Univ Leuven, Dept Math, Celestijnenlaan 200B, B-3001 Leuven, Belgium
[2] Univ Antwerp, imec, Dept Math, Middelheimlaan 1, B-2020 Antwerp, Belgium
[3] Asteria IM, Rue Lausanne 15, CH-1202 Geneva, Switzerland
关键词
Elastic net; gamma-divergence; Logistic regression; Robustness; Sparsity; VARIABLE SELECTION; REGULARIZATION; MODEL;
D O I
10.1007/s11634-023-00572-4
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Logistic regression is one of the most popular statistical techniques for solving (binary) classification problems in various applications (e.g. credit scoring, cancer detection, ad click predictions and churn classification). Typically, the maximum likelihood estimator is used, which is very sensitive to outlying observations. In this paper, we propose a robust and sparse logistic regression estimator where robustness is achieved by means of the gamma-divergence. An elastic net penalty ensures sparsity in the regression coefficients such that the model is more stable and interpretable. We show that the influence function is bounded and demonstrate its robustness properties in simulations. The good performance of the proposed estimator is also illustrated in an empirical application that deals with classifying the type of fuel used by cars.
引用
收藏
页码:663 / 679
页数:17
相关论文
共 50 条
  • [1] Penalized robust estimators in sparse logistic regression
    Bianco, Ana M.
    Boente, Graciela
    Chebi, Gonzalo
    TEST, 2022, 31 (03) : 563 - 594
  • [2] On Regularized Sparse Logistic Regression
    Zhang, Mengyuan
    Liu, Kai
    23RD IEEE INTERNATIONAL CONFERENCE ON DATA MINING, ICDM 2023, 2023, : 1535 - 1540
  • [3] Penalized robust estimators in sparse logistic regression
    Ana M. Bianco
    Graciela Boente
    Gonzalo Chebi
    TEST, 2022, 31 : 563 - 594
  • [4] MLSLR: Multilabel Learning via Sparse Logistic Regression
    Liu, Huawen
    Zhang, Shichao
    Wu, Xindong
    INFORMATION SCIENCES, 2014, 281 : 310 - 320
  • [5] Robust and sparse estimation methods for high-dimensional linear and logistic regression
    Kurnaz, Fatma Sevinc
    Hoffmann, Irene
    Filzmoser, Peter
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2018, 172 : 211 - 222
  • [6] Robust variable selection in the logistic regression model
    Jiang, Yunlu
    Zhang, Jiantao
    Huang, Yingqiang
    Zou, Hang
    Huang, Meilan
    Chen, Fanhong
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2021, 50 (05): : 1572 - 1582
  • [7] An aggregation method for sparse logistic regression
    Liu, Zhe
    INTERNATIONAL JOURNAL OF DATA MINING AND BIOINFORMATICS, 2017, 17 (01) : 85 - 96
  • [8] Robust penalized logistic regression with truncated loss functions
    Park, Seo Young
    Liu, Yufeng
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2011, 39 (02): : 300 - 323
  • [9] Fast sparse regression and classification
    Friedman, Jerome H.
    INTERNATIONAL JOURNAL OF FORECASTING, 2012, 28 (03) : 722 - 738
  • [10] Robust and sparse bridge regression
    Li, Bin
    Yu, Qingzhao
    STATISTICS AND ITS INTERFACE, 2009, 2 (04) : 481 - 491