Development and validation of delirium prediction models for noncardiac surgery patients

被引:2
|
作者
Rossler, Julian [1 ,6 ]
Shah, Karan [1 ,2 ]
Medellin, Sara [1 ]
Turan, Alparslan [1 ,3 ]
Ruetzler, Kurt [1 ,3 ]
Singh, Mriganka [4 ,5 ]
Sessler, Daniel I. [1 ]
Maheshwari, Kamal [1 ]
机构
[1] Cleveland Clin, Dept Outcomes Res, Cleveland, OH 44195 USA
[2] Cleveland Clin, Dept Quantitat Hlth Sci, Cleveland, OH 44106 USA
[3] Cleveland Clin, Dept Gen Anesthesiol, Cleveland Hts, OH USA
[4] Brown Univ, Alpert Med Sch, Div Geriatr & Palliat Med, Providence, RI 02912 USA
[5] Providence Vet Adm Med Ctr, Ctr Innovat Long Term Serv & Supports, Providence, RI USA
[6] Cleveland Clin, Dept Outcomes Res, L-10,9500 Euclid Ave, Cleveland, OH 44195 USA
基金
瑞士国家科学基金会;
关键词
Postoperative; Delirium; Prediction; Noncardiac surgery; Machine learning; Dynamic modeling; Anesthesia; CONFUSION ASSESSMENT METHOD; POSTOPERATIVE DELIRIUM;
D O I
10.1016/j.jclinane.2023.111319
中图分类号
R614 [麻醉学];
学科分类号
100217 ;
摘要
Study objective: Postoperative delirium is associated with morbidity and mortality, and its incidence varies widely. Using known predisposing and precipitating factors, we sought to develop postoperative delirium prediction models for noncardiac surgical patients. Design: Retrospective prediction model study. Setting: Major quaternary medical center. Patients: Our January 2016 to June 2020 training dataset included 51,677 patients of whom 2795 patients had delirium. Our July 2020 to January 2022 validation dataset included 14,438 patients of whom 912 patients had delirium. Interventions: None. Measurements: We trained and validated two static prediction models and one dynamic delirium prediction model. For the static models, we used random survival forests and traditional Cox proportional hazard models to predict postoperative delirium from preoperative variables, or from a combination of preoperative and intraoperative variables. We also used landmark modeling to dynamically predict postoperative delirium using preoperative, intraoperative, and postoperative variables before onset of delirium. Main results: In the validation analyses, the static random forest model had a c-statistic of 0.81 (95% CI: 0.79, 0.82) and a Brier score of 0.04 with preoperative variables only, and a c-statistic of 0.86 (95% CI: 0.84, 0.87) and a Brier score of 0.04 when preoperative and intraoperative variables were combined. The corresponding Cox models had similar discrimination metrics with slightly better calibration. The dynamic model - using all available data, i.e., preoperative, intraoperative and postoperative data - had an overall c-index of 0.84 (95% CI: 0.83, 0.85). Conclusions: Using preoperative and intraoperative variables, simple static models performed as well as a dynamic delirium prediction model that also included postoperative variables. Baseline predisposing factors thus appear to contribute far more to delirium after noncardiac surgery than intraoperative or postoperative variables. Improved postoperative data capture may help improve delirium prediction and should be evaluated in future studies.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Development and validation of prediction models for salivary dysfunction in HN cancer patients
    Van den Bosch, L.
    Van der Schaaf, A.
    Hoebers, F. J. P.
    Van der Laan, H. P.
    Schuit, E.
    Bakker, E.
    Wijers, O. B.
    Van der Wel, A. M.
    Steenbakkers, R. J. H. M.
    Langendijk, J. A.
    RADIOTHERAPY AND ONCOLOGY, 2019, 133 : S104 - S105
  • [42] Development and Validation of Risk Prediction Models for Colorectal Cancer in Patients with Symptoms
    Xu, Wei
    Mesa-Eguiagaray, Ines
    Kirkpatrick, Theresa
    Devlin, Jennifer
    Brogan, Stephanie
    Turner, Patricia
    Macdonald, Chloe
    Thornton, Michelle
    Zhang, Xiaomeng
    He, Yazhou
    Li, Xue
    Timofeeva, Maria
    Farrington, Susan
    Din, Farhat
    Dunlop, Malcolm
    Theodoratou, Evropi
    JOURNAL OF PERSONALIZED MEDICINE, 2023, 13 (07):
  • [43] Development of postoperative delirium prediction models in patients undergoing cardiovascular surgery using machine learning algorithms (vol 13, 21090, 2023)
    Nagata, Chie
    Hata, Masahiro
    Miyazaki, Yuki
    Masuda, Hirotada
    Wada, Tamiki
    Kimura, Tasuku
    Fujii, Makoto
    Sakurai, Yasushi
    Matsubara, Yasuko
    Yoshida, Kiyoshi
    Miyagawa, Shigeru
    Ikeda, Manabu
    Ueno, Takayoshi
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [44] Risk prediction models for delirium in the intensive care unit after cardiac surgery: a systematic review and independent external validation
    Lee, A.
    Mu, J. L.
    Joynt, G. M.
    Chiu, C. H.
    Lai, V. K. W.
    Gin, T.
    Underwood, M. J.
    BRITISH JOURNAL OF ANAESTHESIA, 2017, 118 (03) : 391 - 399
  • [45] Development of interpretable machine learning models for prediction of acute kidney injury after noncardiac surgery: a retrospective cohort study
    Sun, Rao
    Li, Shiyong
    Wei, Yuna
    Hu, Liu
    Xu, Qiaoqiao
    Zhan, Gaofeng
    Yan, Xu
    He, Yuqin
    Wang, Yao
    Li, Xinhua
    Luo, Ailin
    Zhou, Zhiqiang
    INTERNATIONAL JOURNAL OF SURGERY, 2024, 110 (05) : 2950 - 2962
  • [46] Development and Validation of Prediction Models for Developmental and Intellectual Outcome Following Pediatric Epilepsy Surgery
    Cloppenborg, Thomas
    van Schooneveld, Monique
    Hagemann, Anne
    Hopf, Johanna Lena
    Kalbhenn, Thilo
    Otte, Willem M.
    Polster, Tilman
    Bien, Christian G.
    Braun, Kees P. J.
    NEUROLOGY, 2022, 98 (03) : E225 - E235
  • [47] Development and Validation of Simplified Delirium Prediction Model in Intensive Care Unit
    Kim, Min-Kyeong
    Oh, Jooyoung
    Kim, Jae-Jin
    Park, Jin Young
    FRONTIERS IN PSYCHIATRY, 2022, 13
  • [48] Derivation and validation of a prediction score for postoperative delirium in geriatric patients undergoing hip fracture surgery or hip arthroplasty
    Shen, Jiawei
    An, Youzhong
    Jiang, Baoguo
    Zhang, Peixun
    FRONTIERS IN SURGERY, 2022, 9
  • [49] Discharge Prediction for Patients Undergoing Inpatient Surgery: Development and validation of the DEPENDENSE score
    Hammer, Maximilian
    Althoff, Friederike C.
    Platzbecker, Katharina
    Wachtendorf, Luca J.
    Teja, Bijan
    Raub, Dana
    Schaefer, Maximilian S.
    Wongtangman, Karuna
    Xu, Xinling
    Houle, Timothy T.
    Eikermann, Matthias
    Murugappan, Kadhiresan R.
    ACTA ANAESTHESIOLOGICA SCANDINAVICA, 2021, 65 (05) : 607 - 617
  • [50] The Surgical Mortality Probability Model Derivation and Validation of a Simple Risk Prediction Rule for Noncardiac Surgery
    Glance, Laurent G.
    Lustik, Stewart J.
    Hannan, Edward L.
    Osler, Turner M.
    Mukamel, Dana B.
    Qian, Feng
    Dick, Andrew W.
    ANNALS OF SURGERY, 2012, 255 (04) : 696 - 702