Development and validation of delirium prediction models for noncardiac surgery patients

被引:2
|
作者
Rossler, Julian [1 ,6 ]
Shah, Karan [1 ,2 ]
Medellin, Sara [1 ]
Turan, Alparslan [1 ,3 ]
Ruetzler, Kurt [1 ,3 ]
Singh, Mriganka [4 ,5 ]
Sessler, Daniel I. [1 ]
Maheshwari, Kamal [1 ]
机构
[1] Cleveland Clin, Dept Outcomes Res, Cleveland, OH 44195 USA
[2] Cleveland Clin, Dept Quantitat Hlth Sci, Cleveland, OH 44106 USA
[3] Cleveland Clin, Dept Gen Anesthesiol, Cleveland Hts, OH USA
[4] Brown Univ, Alpert Med Sch, Div Geriatr & Palliat Med, Providence, RI 02912 USA
[5] Providence Vet Adm Med Ctr, Ctr Innovat Long Term Serv & Supports, Providence, RI USA
[6] Cleveland Clin, Dept Outcomes Res, L-10,9500 Euclid Ave, Cleveland, OH 44195 USA
基金
瑞士国家科学基金会;
关键词
Postoperative; Delirium; Prediction; Noncardiac surgery; Machine learning; Dynamic modeling; Anesthesia; CONFUSION ASSESSMENT METHOD; POSTOPERATIVE DELIRIUM;
D O I
10.1016/j.jclinane.2023.111319
中图分类号
R614 [麻醉学];
学科分类号
100217 ;
摘要
Study objective: Postoperative delirium is associated with morbidity and mortality, and its incidence varies widely. Using known predisposing and precipitating factors, we sought to develop postoperative delirium prediction models for noncardiac surgical patients. Design: Retrospective prediction model study. Setting: Major quaternary medical center. Patients: Our January 2016 to June 2020 training dataset included 51,677 patients of whom 2795 patients had delirium. Our July 2020 to January 2022 validation dataset included 14,438 patients of whom 912 patients had delirium. Interventions: None. Measurements: We trained and validated two static prediction models and one dynamic delirium prediction model. For the static models, we used random survival forests and traditional Cox proportional hazard models to predict postoperative delirium from preoperative variables, or from a combination of preoperative and intraoperative variables. We also used landmark modeling to dynamically predict postoperative delirium using preoperative, intraoperative, and postoperative variables before onset of delirium. Main results: In the validation analyses, the static random forest model had a c-statistic of 0.81 (95% CI: 0.79, 0.82) and a Brier score of 0.04 with preoperative variables only, and a c-statistic of 0.86 (95% CI: 0.84, 0.87) and a Brier score of 0.04 when preoperative and intraoperative variables were combined. The corresponding Cox models had similar discrimination metrics with slightly better calibration. The dynamic model - using all available data, i.e., preoperative, intraoperative and postoperative data - had an overall c-index of 0.84 (95% CI: 0.83, 0.85). Conclusions: Using preoperative and intraoperative variables, simple static models performed as well as a dynamic delirium prediction model that also included postoperative variables. Baseline predisposing factors thus appear to contribute far more to delirium after noncardiac surgery than intraoperative or postoperative variables. Improved postoperative data capture may help improve delirium prediction and should be evaluated in future studies.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Prediction model for delirium in patients with cardiovascular surgery: development and validation
    Yanghui Xu
    Yunjiao Meng
    Xuan Qian
    Honglei Wu
    Yanmei Liu
    Peipei Ji
    Honglin Chen
    Journal of Cardiothoracic Surgery, 17
  • [2] Prediction model for delirium in patients with cardiovascular surgery: development and validation
    Xu, Yanghui
    Meng, Yunjiao
    Qian, Xuan
    Wu, Honglei
    Liu, Yanmei
    Ji, Peipei
    Chen, Honglin
    JOURNAL OF CARDIOTHORACIC SURGERY, 2022, 17 (01)
  • [3] PREDICT, Prediction of Delirium in ICU Patients: development and validation of a prediction model
    M Vanden Boogaard
    P Pickkers
    H Vander Hoeven
    R Donders
    T Van Achterberg
    L Schoonhoven
    Critical Care, 14 (Suppl 1):
  • [4] Development and Validation of a Delirium Risk Prediction Model for Elderly Patients Undergoing Elective Orthopedic Surgery
    Guo, Yaxin
    Ji, Haiyan
    Liu, Junfeng
    Wang, Yong
    Liu, Jinming
    Sun, Hong
    Fei, Yuanhui
    Wang, Chunhui
    Ma, Tieliang
    Han, Chao
    NEUROPSYCHIATRIC DISEASE AND TREATMENT, 2023, 19 : 1641 - 1654
  • [5] A CLINICAL-PREDICTION RULE FOR DELIRIUM AFTER ELECTIVE NONCARDIAC SURGERY
    MARCANTONIO, ER
    GOLDMAN, L
    MANGIONE, CM
    LUDWIG, LE
    MURACA, B
    HASLAUER, CM
    DONALDSON, MC
    WHITTEMORE, AD
    SUGARBAKER, DJ
    POSS, R
    HAAS, S
    COOK, EF
    ORAV, J
    LEE, TH
    JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 1994, 271 (02): : 134 - 139
  • [6] EFFECT OF DELIRIUM ON PHYSICAL FUNCTION IN NONCARDIAC THORACIC SURGERY PATIENTS
    Khan, Sikandar H.
    Xu, Chenjia
    Wang, Sophia
    Gao, Sujuan
    Lasiter, Sue
    Kesler, Kenneth
    Khan, Babar A.
    AMERICAN JOURNAL OF CRITICAL CARE, 2020, 29 (02) : E39 - E43
  • [7] Postoperative Delirium After Noncardiac Surgery
    Cil, Cem
    Celik, Oguzhan
    Ozlek, Bulent
    Ozlek, Eda
    Gokcek, Aysel
    Dogan, Volkan
    PSYCHOSOMATICS, 2019, 60 (02) : 222 - 223
  • [8] Exploiting Machine Learning Algorithms and Methods for the Prediction of Agitated Delirium After Cardiac Surgery: Models Development and Validation Study
    Mufti, Hani Nabeel
    Hirsch, Gregory Marshal
    Abidi, Samina Raza
    Abidi, Syed Sibte Raza
    JMIR MEDICAL INFORMATICS, 2019, 7 (04) : 193 - 213
  • [9] Multinational development and validation of an early prediction model for delirium in ICU patients
    Wassenaar, A.
    van den Boogaard, M.
    van Achterberg, T.
    Slooter, A. J. C.
    Kuiper, M. A.
    Hoogendoorn, M. E.
    Simons, K. S.
    Maseda, E.
    Pinto, N.
    Jones, C.
    Luetz, A.
    Schandl, A.
    Verbrugghe, W.
    Aitken, L. M.
    van Haren, F. M. P.
    Donders, A. R. T.
    Schoonhoven, L.
    Pickkers, P.
    INTENSIVE CARE MEDICINE, 2015, 41 (06) : 1048 - 1056
  • [10] Multinational development and validation of an early prediction model for delirium in ICU patients
    A. Wassenaar
    M. van den Boogaard
    T. van Achterberg
    A. J. C. Slooter
    M. A. Kuiper
    M. E. Hoogendoorn
    K. S. Simons
    E. Maseda
    N. Pinto
    C. Jones
    A. Luetz
    A. Schandl
    W. Verbrugghe
    L. M. Aitken
    F. M. P. van Haren
    A. R. T. Donders
    L. Schoonhoven
    P. Pickkers
    Intensive Care Medicine, 2015, 41 : 1048 - 1056