On Unique Sums in Abelian Groups

被引:0
作者
Bedert, Benjamin [1 ]
机构
[1] Univ Oxford, Math Inst, Radcliffe Observ Quarter, Andrew Wiles Bldg,Woodstock Rd, Oxford OX2 6GG, England
基金
英国工程与自然科学研究理事会;
关键词
Sumsets; Representation functions; Additive dimension; Additive basis; Finite Abelian groups;
D O I
10.1007/s00493-023-00069-w
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A be a subset of the cyclic group Z/pZ with p prime. It is a well-studied problem to determine how small vertical bar A vertical bar can be if there is no unique sum in A+A, meaning that for every two elements a(1),a(2) is an element of A, there exist a(1)',a(2) 'is an element of A such that a(1) + a(2) = a(1)'+a(2)' and {a(1), a(2)'} not equal {a(1)', a(2)'}. Let m(p) be the size of a smallest subset of Z/pZ with no unique sum. The previous best known bounds are log p << m (m) << root p. In this paper we improve both the upper and lower bounds to omega(p)log p <= m(p) << (log P)(2) for some function omega(P) which tends to infinity as P -> infinity. In particular, this shows that for any B subset of Z/(P)Z of size vertical bar B vertical bar < omega(P) log P, its sumset B + B contains a unique sum. We also obtain corresponding bounds on the size of the smallest subset of a general Abelian group having no unique sum.
引用
收藏
页码:269 / 298
页数:30
相关论文
共 50 条
  • [1] On Unique Sums in Abelian Groups
    Benjamin Bedert
    Combinatorica, 2024, 44 : 269 - 298
  • [2] Unique sums and differences in finite Abelian groups
    Leung, Ka Hin
    Schmidt, Bernhard
    JOURNAL OF NUMBER THEORY, 2022, 233 : 370 - 388
  • [3] Counting subset sums of finite abelian groups
    Li, Jiyou
    Wan, Daqing
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2012, 119 (01) : 170 - 182
  • [4] The critical number of finite abelian groups
    Freeze, Michael
    Gao, Weidong
    Geroldinger, Alfred
    JOURNAL OF NUMBER THEORY, 2009, 129 (11) : 2766 - 2777
  • [5] On capability of finite abelian groups
    Zoran Šunić
    Archiv der Mathematik, 2009, 93 : 23 - 28
  • [6] REPRESENTATION FUNCTIONS ON ABELIAN GROUPS
    Ma, Wu-Xia
    Chen, Yong-Gao
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2019, 99 (01) : 10 - 14
  • [7] On small sumsets in abelian groups
    Lev, VF
    ASTERISQUE, 1999, (258) : 317 - 321
  • [8] Abelian groups as autocommutator subgroups
    Chaboksavar M.
    Farrokhi Derakhshande Ghoochan M.
    Saeedi F.
    Rendiconti del Circolo Matematico di Palermo (1952 -), 2014, 63 (3): : 319 - 327
  • [9] On capability of finite abelian groups
    Sunic, Zoran
    ARCHIV DER MATHEMATIK, 2009, 93 (01) : 23 - 28
  • [10] Common transversals and complements in abelian groups
    S. Aivazidis
    M. Loukaki
    B. Sambale
    Journal of Algebraic Combinatorics, 2024, 59 : 581 - 595