On Unique Sums in Abelian Groups

被引:0
|
作者
Bedert, Benjamin [1 ]
机构
[1] Univ Oxford, Math Inst, Radcliffe Observ Quarter, Andrew Wiles Bldg,Woodstock Rd, Oxford OX2 6GG, England
基金
英国工程与自然科学研究理事会;
关键词
Sumsets; Representation functions; Additive dimension; Additive basis; Finite Abelian groups;
D O I
10.1007/s00493-023-00069-w
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A be a subset of the cyclic group Z/pZ with p prime. It is a well-studied problem to determine how small vertical bar A vertical bar can be if there is no unique sum in A+A, meaning that for every two elements a(1),a(2) is an element of A, there exist a(1)',a(2) 'is an element of A such that a(1) + a(2) = a(1)'+a(2)' and {a(1), a(2)'} not equal {a(1)', a(2)'}. Let m(p) be the size of a smallest subset of Z/pZ with no unique sum. The previous best known bounds are log p << m (m) << root p. In this paper we improve both the upper and lower bounds to omega(p)log p <= m(p) << (log P)(2) for some function omega(P) which tends to infinity as P -> infinity. In particular, this shows that for any B subset of Z/(P)Z of size vertical bar B vertical bar < omega(P) log P, its sumset B + B contains a unique sum. We also obtain corresponding bounds on the size of the smallest subset of a general Abelian group having no unique sum.
引用
收藏
页码:269 / 298
页数:30
相关论文
共 50 条
  • [1] On Unique Sums in Abelian Groups
    Benjamin Bedert
    Combinatorica, 2024, 44 : 269 - 298
  • [2] Unique sums and differences in finite Abelian groups
    Leung, Ka Hin
    Schmidt, Bernhard
    JOURNAL OF NUMBER THEORY, 2022, 233 : 370 - 388
  • [3] Sums of triples in Abelian groups
    Feldman, Ido
    Rinot, Assaf
    MATHEMATIKA, 2023, 69 (03) : 622 - 664
  • [4] SUMS IN ABELIAN-GROUPS
    RICKERT, U
    JOURNAL OF NUMBER THEORY, 1979, 11 (01) : 16 - 19
  • [5] On weighted sums in abelian groups
    Discrete Math, 1-3 (127):
  • [6] Subset sums in abelian groups
    Balandraud, Eric
    Girard, Benjamin
    Griffiths, Simon
    Hamidoune, Yahya Ould
    EUROPEAN JOURNAL OF COMBINATORICS, 2013, 34 (08) : 1269 - 1286
  • [7] On weighted sums in abelian groups
    Hamidoune, YO
    DISCRETE MATHEMATICS, 1996, 162 (1-3) : 127 - 132
  • [8] Zero sums in abelian groups
    Gao, WD
    Hamidoune, YO
    COMBINATORICS PROBABILITY & COMPUTING, 1998, 7 (03): : 261 - 263
  • [9] A problem on partial sums in abelian groups
    Costa, S.
    Morini, F.
    Pasotti, A.
    Pellegrini, M. A.
    DISCRETE MATHEMATICS, 2018, 341 (03) : 705 - 712
  • [10] k-Sums in Abelian Groups
    Girard, Benjamin
    Griffiths, Simon
    Hamidoune, Yahya Ould
    COMBINATORICS PROBABILITY & COMPUTING, 2012, 21 (04): : 582 - 596