An Ionic Liquid Electrolyte Additive for High-Performance Lithium-Sulfur Batteries

被引:4
|
作者
Guan, Zeliang [1 ]
Bai, Ling [1 ]
Du, Binyang [1 ]
机构
[1] Zhejiang Univ, Dept Polymer Sci & Engn, MOE Key Lab Macromol Synth & Functionalizat, Hangzhou 310027, Peoples R China
关键词
lithium-sulfur battery; ionic liquid; electrolyte; additive; ELECTROCHEMICAL PERFORMANCE; EFFICIENT; SALTS; INTERPHASE; AMMONIUM; SHUTTLE; CATHODE; LINO3;
D O I
10.3390/ma16237504
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
With the development of mobile electronic devices, there are more and more requirements for high-energy storage equipment. Traditional lithium-ion batteries, like lithium-iron phosphate batteries, are limited by their theoretical specific capacities and might not meet the requirements for high energy density in the future. Lithium-sulfur batteries (LSBs) might be ideal next-generation energy storage devices because they have nearly 10 times the theoretical specific capacities of lithium-ion batteries. However, the severe capacity decay of LSBs limits their application, especially at high currents. In this study, an ionic liquid (IL) electrolyte additive, TDA+TFSI, was reported. When 5% of the TDA+TFSI additive was added to a traditional ether-based organic electrolyte, the cycling performance of the LSBs was significantly improved compared with that of the LSBs with the pure traditional organic electrolyte. At a rate of 0.5 C, the discharge specific capacity in the first cycle of the LSBs with the 5% TDA+TFSI electrolyte additive was 1167 mAh g-1; the residual specific capacities after 100 cycles and 300 cycles were 579 mAh g-1 and 523 mAh g-1, respectively; and the average capacity decay rate per cycle was only 0.18% in 300 cycles. Moreover, the electrolyte with the TDA+TFSI additive had more obvious advantages than the pure organic ether-based electrolyte at high charge and discharge currents of 1.0 C. The residual discharge specific capacities were 428 mAh g-1 after 100 cycles and 399 mAh g-1 after 250 cycles, which were 13% higher than those of the LSBs without the TDA+TFSI additive. At the same time, the Coulombic efficiencies of the LSBs using the TDA+TFSI electrolyte additive were more stable than those of the LSBs using the traditional organic ether-based electrolyte. The results showed that the LSBs with the TDA+TFSI electrolyte additive formed a denser and more uniform solid electrolyte interface (SEI) film during cycling, which improved the stability of the electrochemical reaction.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] A multifunctional separator for high-performance lithium-sulfur batteries
    Yang, Dezhi
    Zhi, Ruoyu
    Ruan, Daqian
    Yan, Wenqi
    Zhu, Yusong
    Chen, Yuhui
    Fu, Lijun
    Holze, Rudolf
    Zhang, Yi
    Wu, Yuping
    Wang, Xudong
    ELECTROCHIMICA ACTA, 2020, 334
  • [22] Targeted Electrocatalysis for High-Performance Lithium-Sulfur Batteries
    Nazir, Aqsa
    Pathak, Anil
    Hamal, Dambar
    Awadallah, Osama
    Motevalian, Saeme
    Claus, Ana
    Drozd, Vadym
    El-Zahab, Bilal
    ENERGY & ENVIRONMENTAL MATERIALS, 2025, 8 (02)
  • [23] A Compact Nanoconfined Sulfur Cathode for High-Performance Lithium-Sulfur Batteries
    Li, Zhen
    Guan, Bu Yuan
    Zhang, Jintao
    Lou, Xiong Wen
    JOULE, 2017, 1 (03) : 576 - 587
  • [24] Modality-Tunable Exfoliated N-Doped Graphene as Effective Electrolyte Additive for High-Performance Lithium-Sulfur Batteries
    Shah, Vaidik R.
    Sinha, Ritwick
    Cesarski, Walter J.
    Gao, Xiaosi
    Yuk, Simuck F.
    Joo, Yong Lak
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (40) : 53950 - 53962
  • [25] A Safe Electrolyte with Counterbalance between the Ionic Liquid and Tris(ethylene glycol)dimethyl ether for High Performance Lithium-Sulfur Batteries
    Wu, Feng
    Zhu, Qizhen
    Chen, Renjie
    Chen, Nan
    Chen, Yan
    Li, Li
    ELECTROCHIMICA ACTA, 2015, 184 : 356 - 363
  • [26] Advances in Cathode Materials for High-Performance Lithium-Sulfur Batteries
    Dong, Chunwei
    Gao, Wang
    Jin, Bo
    Jiang, Qing
    ISCIENCE, 2018, 6 : 151 - 198
  • [27] Dual-enhancement on electrochemical performance with thioacetamide as an electrolyte additive for lithium-sulfur batteries
    Li, Jie
    He, Liang
    Qin, Furong
    Fang, Jing
    Hong, Bo
    Lai, Yanqing
    ELECTROCHIMICA ACTA, 2021, 376
  • [28] Improving the electrochemical performance of lithium-sulfur batteries by interface modification with a bifunctional electrolyte additive
    Liu, Fangyan
    Zong, Chuanxin
    He, Liang
    Li, Zhaoyang
    Hong, Bo
    Wang, Mengran
    Zhang, Zhian
    Lai, Yanqing
    Li, Jie
    CHEMICAL ENGINEERING JOURNAL, 2022, 443
  • [29] High-Performance Lithium-Sulfur Batteries via Molecular Complexation
    Wang, Peiyu
    Kateris, Nikolaos
    Li, Baiheng
    Zhang, Yiwen
    Luo, Jianmin
    Wang, Chuanlong
    Zhang, Yue
    Jayaraman, Amitesh S.
    Hu, Xiaofei
    Wang, Hai
    Li, Weiyang
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2023, 145 (34) : 18865 - 18876
  • [30] Multifunctional Separator Coatings for High-Performance Lithium-Sulfur Batteries
    Kim, Mun Sek
    Ma, Lin
    Choudhury, Snehashis
    Archer, Lynden A.
    ADVANCED MATERIALS INTERFACES, 2016, 3 (22):