Size-Dependent In Vivo Transport of Nanoparticles: Implications for Delivery, Targeting, and Clearance

被引:263
作者
Xu, Mingze [1 ]
Qi, Yuming [1 ]
Liu, Gaoshuo [1 ]
Song, Yuanqing [1 ]
Jiang, Xingya [2 ,3 ,4 ]
Du, Bujie [1 ]
机构
[1] South China Univ Technol, Affiliated Hosp 2, Sch Med, Ctr Med Res Innovat & Translat,Inst Clin Med, Guangzhou 510180, Peoples R China
[2] South China Univ Technol, Sch Biomed Sci & Engn, Guangzhou Int Campus, Guangzhou 511442, Peoples R China
[3] South China Univ Technol, Natl Engn Res Ctr Tissue Restorat & Reconstruct, Guangdong Prov Key Lab Biomed Engn, Guangzhou 510006, Peoples R China
[4] South China Univ Technol, Key Lab Biomed Mat & Engn, Minist Educ, Guangzhou 510006, Peoples R China
基金
中国国家自然科学基金;
关键词
size threshold; in vivo transport; size effect; nanoparticles; delivery; targeting; clearance; physiological barrier; IRON-OXIDE NANOPARTICLES; LUMINESCENT GOLD NANOPARTICLES; HUMAN TUMOR XENOGRAFT; PROTEIN CORONA; DRUG-DELIVERY; SURFACE-CHEMISTRY; RENAL CLEARANCE; VASCULAR-PERMEABILITY; CELLULAR UPTAKE; PARTICLE-SIZE;
D O I
10.1021/acsnano.3c05853
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Understanding the in vivo transport of nanoparticles provides guidelines for designing nanomedicines with higher efficacy and fewer side effects. Among many factors, the size of nanoparticles plays a key role in controlling their in vivo transport behaviors due to the existence of various physiological size thresholds within the body and size-dependent nano-bio interactions. Encouraged by the evolving discoveries of nanoparticle-size-dependent biological effects, we believe that it is necessary to systematically summarize the size-scaling laws of nanoparticle transport in vivo. In this review, we summarized the size effect of nanoparticles on their in vivo transport along their journey in the body: begin with the administration of nanoparticles via different delivery routes, followed by the targeting of nanoparticles to intended tissues including tumors and other organs, and eventually clearance of nanoparticles through the liver or kidneys. We outlined the tools for investigating the in vivo transport of nanoparticles as well. Finally, we discussed how we may leverage the size-dependent transport to tackle some of the key challenges in nanomedicine translation and also raised important size-related questions that remain to be answered in the future.
引用
收藏
页码:20825 / 20849
页数:25
相关论文
共 254 条
[1]   Astrocyte-endothelial interactions at the blood-brain barrier [J].
Abbott, NJ ;
Rönnbäck, L ;
Hansson, E .
NATURE REVIEWS NEUROSCIENCE, 2006, 7 (01) :41-53
[2]   Lymphatic targeting by albumin-hitchhiking: Applications and optimisation [J].
Abdallah, Mohammad ;
Mullertz, Olivia O. ;
Styles, Ian K. ;
Morsdorf, Alexander ;
Quinn, John F. ;
Whittaker, Michael R. ;
Trevaskis, Natalie L. .
JOURNAL OF CONTROLLED RELEASE, 2020, 327 :117-128
[3]   Inhalable particulate drug delivery systems for lung cancer therapy: Nanoparticles, microparticles, nanocomposites and nanoaggregates [J].
Abdelaziz, Hadeer M. ;
Gaber, Mohamed ;
Abd-Elwakil, Mahmoud M. ;
Mabrouk, Moustafa T. ;
Elgohary, Mayada M. ;
Kamel, Nayra M. ;
Kabary, Dalia M. ;
Freag, May S. ;
Samaha, Magda W. ;
Mortada, Sana M. ;
Elkhodairy, Kadria A. ;
Fang, Jia-You ;
Elzoghby, Ahmed O. .
JOURNAL OF CONTROLLED RELEASE, 2018, 269 :374-392
[4]   Phenotypic heterogeneity of the endothelium I. Structure, function, and mechanisms [J].
Aird, William C. .
CIRCULATION RESEARCH, 2007, 100 (02) :158-173
[5]   Phenotypic heterogeneity of the endothelium II. Representative vascular beds [J].
Aird, William C. .
CIRCULATION RESEARCH, 2007, 100 (02) :174-190
[6]   Development of siRNA-probes for studying intracellular trafficking of siRNA nanoparticles [J].
Alabi, Christopher A. ;
Sahay, Gaurav ;
Langer, Robert ;
Anderson, Daniel G. .
INTEGRATIVE BIOLOGY, 2013, 5 (01) :224-230
[7]   Lipid nanoparticles enhance the efficacy of mRNA and protein subunit vaccines by inducing robust T follicular helper cell and humoral responses [J].
Alameh, Mohamad-Gabriel ;
Tombacz, Istvan ;
Bettini, Emily ;
Lederer, Katlyn ;
Sittplangkoon, Chutamath ;
Wilmore, Joel R. ;
Gaudette, Brian T. ;
Soliman, Ousamah Y. ;
Pine, Matthew ;
Hicks, Philip ;
Manzoni, Tomaz B. ;
Knox, James J. ;
Johnson, John L. ;
Laczko, Dorottya ;
Muramatsu, Hiromi ;
Davis, Benjamin ;
Meng, Wenzhao ;
Rosenfeld, Aaron M. ;
Strohmeier, Shirin ;
Lin, Paulo J. C. ;
Mui, Barbara L. ;
Tam, Ying K. ;
Kariko, Katalin ;
Jacquet, Alain ;
Krammer, Florian ;
Bates, Paul ;
Cancro, Michael P. ;
Weissman, Drew ;
Prak, Eline T. Luning ;
Allman, David ;
Locci, Michela ;
Pardi, Norbert .
IMMUNITY, 2021, 54 (12) :2877-+
[8]   Advances in structural design of lipid-based nanoparticle carriers for delivery of macromolecular drugs, phytochemicals and anti-tumor agents [J].
Angelova, Angelina ;
Garamus, Vasil M. ;
Angelov, Borislav ;
Tian, Zhenfen ;
Li, Yawen ;
Zou, Aihua .
ADVANCES IN COLLOID AND INTERFACE SCIENCE, 2017, 249 :331-345
[9]   Biocompatible Mesoporous and Soft Nanoarchitectures [J].
Angelova, Angelina ;
Angelov, Borislav ;
Mutafchieva, Rada ;
Lesieur, Sylviane .
JOURNAL OF INORGANIC AND ORGANOMETALLIC POLYMERS AND MATERIALS, 2015, 25 (02) :214-232
[10]   Protein entrapment in PEGylated lipid nanoparticles [J].
Angelova, Angelina ;
Angelov, Borislav ;
Drechsler, Markus ;
Garamus, Vasil M. ;
Lesieur, Sylviane .
INTERNATIONAL JOURNAL OF PHARMACEUTICS, 2013, 454 (02) :625-632