Fine-grained imbalanced leukocyte classification with global-local attention transformer

被引:3
|
作者
Chen, Ben [1 ]
Qin, Feiwei [2 ]
Shao, Yanli [2 ]
Cao, Jin [3 ]
Peng, Yong [2 ]
Ge, Ruiquan [2 ]
机构
[1] Hangzhou Dianzi Univ, HDU ITMO Joint Inst, Hangzhou 310018, Peoples R China
[2] Hangzhou Dianzi Univ, Sch Comp Sci & Technol, Hangzhou 310018, Peoples R China
[3] Sichuan Univ, Coll Comp Sci, Chengdu 610065, Peoples R China
基金
中国国家自然科学基金;
关键词
Leukocyte; Image classification; Convolutional neural network; Transformer; BLOOD; SEGMENTATION; LEUKEMIA; SYSTEM;
D O I
10.1016/j.jksuci.2023.101661
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Leukemia is a fatal disease that requires the counting of White Blood Cells (WBCs) in bone marrow for diagnosis. However, bone marrow blood contains many types of leukocytes, some of which have subtle differences. To address this issue, we propose the WBC-GLAformer model, which comprises three parts: Low-level Feature Extractor (LFE), Global-Local Attention based Encoder (GLAE), and Discrimination Part Select (DPS). The LFE uses a convolutional neural network (CNN) to tokenize patches from the extracted low-level features. The GLAE combines the ability of the CNN to extract local features with the ability of the transformer to extract global features, thereby enriching the features of leukocyte images. The DPS improves the accuracy of leukocyte classification by selecting the discriminative regions. Our method achieves state-of-the-art results in the bone marrow leukocyte fine-grained classification dataset. Experimental results demonstrate that the model has good generalization on different datasets and is more robust to the optimizer. And visualization results show that the model can effectively focus on the discriminative parts of different cells. Code is available at https://github.com/ywj1/WBC-GLAformer (c) 2023 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Aggregate attention module for fine-grained image classification
    Xingmei Wang
    Jiahao Shi
    Hamido Fujita
    Yilin Zhao
    Journal of Ambient Intelligence and Humanized Computing, 2023, 14 : 8335 - 8345
  • [22] Aggregate attention module for fine-grained image classification
    Wang, Xingmei
    Shi, Jiahao
    Fujita, Hamido
    Zhao, Yilin
    JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING, 2021, 14 (7) : 8335 - 8345
  • [23] Global-Local Multigranularity Transformer for Hyperspectral Image Classification
    Meng, Zhe
    Yan, Qian
    Zhao, Feng
    Chen, Gaige
    Hua, Wenqiang
    Liang, Miaomiao
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2025, 18 : 112 - 131
  • [24] Dual Transformer With Multi-Grained Assembly for Fine-Grained Visual Classification
    Ji, Ruyi
    Li, Jiaying
    Zhang, Libo
    Liu, Jing
    Wu, Yanjun
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2023, 33 (09) : 5009 - 5021
  • [25] Fine-Grained Ship Classification by Combining CNN and Swin Transformer
    Huang, Liang
    Wang, Fengxiang
    Zhang, Yalun
    Xu, Qingxia
    REMOTE SENSING, 2022, 14 (13)
  • [26] Fine-Grained Image Classification Model Based on Improved Transformer
    Tian Zhansheng
    Liu Libo
    LASER & OPTOELECTRONICS PROGRESS, 2023, 60 (02)
  • [27] TransFGVC: transformer-based fine-grained visual classification
    Shen, Longfeng
    Hou, Bin
    Jian, Yulei
    Tu, Xisong
    Zhang, Yingjie
    Shuai, Lingying
    Ge, Fangzhen
    Chen, Debao
    VISUAL COMPUTER, 2025, 41 (04): : 2439 - 2459
  • [28] Generating face images from fine-grained sketches based on GAN with global-local joint discriminator
    Gao, Huachao
    Mao, Wei
    Lin, Yongping
    2022 2ND IEEE INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING AND ARTIFICIAL INTELLIGENCE (SEAI 2022), 2022, : 50 - 54
  • [29] Loop and distillation: Attention weights fusion transformer for fine-grained representation
    Fayou, Sun
    Ngo, Hea Choon
    Meng, Zuqiang
    Sek, Yong Wee
    IET COMPUTER VISION, 2023, 17 (04) : 473 - 482
  • [30] Multistage attention region supplement transformer for fine-grained visual categorization
    Mei, Aokun
    Huo, Hua
    Xu, Jiaxin
    Xu, Ningya
    VISUAL COMPUTER, 2025, 41 (03): : 1873 - 1889