A Comprehensive Survey of Recommender Systems Based on Deep Learning

被引:8
|
作者
Zhou, Hongde [1 ]
Xiong, Fei [1 ]
Chen, Hongshu [2 ]
机构
[1] Beijing Jiaotong Univ, Beijing Municipal Commiss Educ, Key Lab Commun & Informat Syst, Beijing 100044, Peoples R China
[2] Beijing Inst Technol, Sch Management & Econ, Beijing 100081, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2023年 / 13卷 / 20期
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
recommender systems; deep learning; social networks; sequence recommendation; cross-domain recommendation; PREDICTION;
D O I
10.3390/app132011378
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
With the increasing abundance of information resources and the development of deep learning techniques, recommender systems (RSs) based on deep learning have gradually become a research focus. Although RSs have evolved in recent years, a systematic review of existing RS approaches is still warranted. The main focus of this paper is on recommendation models that incorporate deep learning techniques. The objective is to guide novice researchers interested in this field through the investigation and application of the proposed recommendation models. Specifically, we first categorize existing RS approaches into four types: content-based recommendations, sequence recommendations, cross-domain recommendations, and social recommendation methods. We then introduce the definitions and address the challenges associated with these RS methodologies. Subsequently, we propose a comprehensive categorization framework and novel taxonomies for these methodologies, providing a thorough account of their research advancements. Finally, we discuss future developments regarding this topic.
引用
收藏
页数:31
相关论文
共 50 条
  • [31] Shilling attacks against recommender systems: a comprehensive survey
    Ihsan Gunes
    Cihan Kaleli
    Alper Bilge
    Huseyin Polat
    Artificial Intelligence Review, 2014, 42 : 767 - 799
  • [32] Convergence of Recommender Systems and Edge Computing: A Comprehensive Survey
    Sun, Chuan
    Li, Hui
    Li, Xiuhua
    Wen, Junhao
    Xiong, Qingyu
    Zhou, Wei
    IEEE ACCESS, 2020, 8 (08): : 47118 - 47132
  • [33] Shilling attacks against recommender systems: a comprehensive survey
    Gunes, Ihsan
    Kaleli, Cihan
    Bilge, Alper
    Polat, Huseyin
    ARTIFICIAL INTELLIGENCE REVIEW, 2014, 42 (04) : 767 - 799
  • [34] A Survey of Semantic Web Based Recommender Systems for E-Learning
    Aktas, Cevat
    Ciloglugil, Birol
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS-ICCSA 2023 WORKSHOPS, PT I, 2023, 14104 : 494 - 506
  • [35] A Framework for Enhancing Deep Learning Based Recommender Systems with Knowledge Graphs
    Mudur, Sudhir P.
    Mokhov, Serguei A.
    Mao, Yuhao
    IDEAS 2021: 25TH INTERNATIONAL DATABASE ENGINEERING & APPLICATIONS SYMPOSIUM, 2021, : 11 - 20
  • [36] A deep learning based algorithm for multi-criteria recommender systems
    Shambour, Qusai
    KNOWLEDGE-BASED SYSTEMS, 2021, 211
  • [37] Adversarial Robustness of Deep Reinforcement Learning Based Dynamic Recommender Systems
    Wang, Siyu
    Cao, Yuanjiang
    Chen, Xiaocong
    Yao, Lina
    Wang, Xianzhi
    Sheng, Quan Z.
    FRONTIERS IN BIG DATA, 2022, 5
  • [38] Deep Learning for Search and Recommender Systems in Practice
    Fu, Zhoutong
    Gao, Huiji
    Guo, Weiwei
    Jha, Sandeep Kumar
    Jia, Jun
    Liu, Xiaowei
    Long, Bo
    Shi, Jun
    Wang, Sida
    Zhou, Mingzhou
    KDD '20: PROCEEDINGS OF THE 26TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2020, : 3515 - 3516
  • [39] Collaborative Deep Forest Learning for Recommender Systems
    Molaei, Soheila
    Havvaei, Amirhossein
    Zare, Hadi
    Jalili, Mahdi
    IEEE ACCESS, 2021, 9 : 22053 - 22061
  • [40] An Efficient Deep Learning Model for Recommender Systems
    Modarresi, Kourosh
    Diner, Jamie
    COMPUTATIONAL SCIENCE - ICCS 2018, PT II, 2018, 10861 : 221 - 233