Liquid-vapor order parameter and coexistence-curve diameter of nitrogen, ethylene, and sulfur hexafluoride: From the triple point to the critical scaling regime

被引:0
作者
Tomaschitz, Roman [1 ]
机构
[1] Sechsschimmelgasse 1 21 22, A-1090 Vienna, Austria
关键词
Coexistence -curve diameter; Order parameter; Vapor -liquid equilibria; Critical power -law scaling; Effective exponents; Nonlinear least -squares regression; EQUATION-OF-STATE; ISOCHORIC HEAT-CAPACITY; THERMODYNAMIC PROPERTIES; SINGULAR DIAMETERS; SIZE DISTRIBUTION; MELTING LINE; TEMPERATURES; PRESSURES; MIXTURES; BEHAVIOR;
D O I
10.1016/j.fluid.2023.113961
中图分类号
O414.1 [热力学];
学科分类号
摘要
Analytic closed-form expressions are obtained for the liquid and vapor saturation densities defining the coexistence curve. The densities are modeled with broken power laws and Weibull distributions. Specifically, the coexistence curves of nitrogen, ethene and sulfur hexafluoride are derived, without the use of perturbative expansions, based on high-precision data extending from the triple point into the critical regime. The analytic continuation of the vapor branch below the triple point decays exponentially at low temperature. The order parameter and coexistence-curve diameter of the fluids are assembled from the regressed liquid and vapor branches of the coexistence curve, and the critical power-law scaling of these quantities is examined. The scaling exponents of the order parameter and the reduced diameter are regressed and compared with the calculated critical exponents of the 3D Ising universality class. Index functions representing the Log-Log slopes (temperature-dependent effective exponents) of the liquid and vapor densities, order parameter and diameter are used to determine the onset of the ideal power-law scaling regime and to illustrate the slope evolution of these quantities in the subcritical regime.
引用
收藏
页数:21
相关论文
共 53 条
  • [1] Measurements of the isochoric heat capacity, the critical point (TC, ρC) and vapor-liquid coexistence curve (TS, ρS) of high-purity toluene near the critical point
    Abdulagatov, I. M.
    Polikhronidi, N. G.
    Bruno, T. J.
    Batyrova, R. G.
    Stepanov, G. V.
    [J]. FLUID PHASE EQUILIBRIA, 2008, 263 (01) : 71 - 84
  • [2] Abdulagatov I.M., 2018, Enthalpy and Internal Energy: Liquids, Solutions and Vapours
  • [3] Yang-Yang critical anomaly strength parameter from the direct two-phase isochoric heat capacity measurements near the critical point
    Abdulagatov, Ilmutdin M.
    Polikhronidi, Nikolai G.
    Batyrova, Rabiyat G.
    [J]. FLUID PHASE EQUILIBRIA, 2016, 415 : 144 - 157
  • [4] The Wide-Range Method to Construct the Entire Coexistence Liquid-Gas Curve and to Determine the Critical Parameters of Metals
    Apfelbaum, E. M.
    Vorob'ev, V. S.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2015, 119 (35) : 11825 - 11832
  • [5] UNIVERSAL RATIO OF CORRECTION-TO-SCALING AMPLITUDES FOR XE
    BALZARINI, D
    MOURITSEN, OG
    [J]. PHYSICAL REVIEW A, 1983, 28 (06): : 3515 - 3519
  • [6] Critical phenomena in microgravity: Past, present, and future
    Barmatz, M.
    Hahn, Inseob
    Lipa, J. A.
    Duncan, R. V.
    [J]. REVIEWS OF MODERN PHYSICS, 2007, 79 (01) : 1 - 52
  • [7] CRITICAL-BEHAVIOR OF HYDROGEN
    DEBRUYN, JR
    BALZARINI, DA
    [J]. PHYSICAL REVIEW B, 1989, 39 (13): : 9243 - 9251
  • [8] Impact of Pressure on Low-Molecular Weight Near-Critical Mixtures of Limited Miscibility
    Drozd-Rzoska, Aleksandra
    Rzoska, Sylwester J.
    Kalabinski, Jakub
    [J]. ACS OMEGA, 2020, 5 (32): : 20141 - 20152
  • [9] El-Showk S, 2014, J STAT PHYS, V157, P869, DOI 10.1007/s10955-014-1042-7
  • [10] INCOME-SHARE ELASTICITY AND THE SIZE DISTRIBUTION OF INCOME
    ESTEBAN, J
    [J]. INTERNATIONAL ECONOMIC REVIEW, 1986, 27 (02) : 439 - 444