Design and Analysis of Ultra-Precision Smart Cutting Tool for In-Process Force Measurement and Tool Nanopositioning in Ultra-High-Precision Single-Point Diamond Turning

被引:3
作者
Hatefi, Shahrokh [1 ]
Smith, Farouk [1 ]
机构
[1] Nelson Mandela Univ, Fac Engn Built Environm & Technol, Dept Mechatron, ZA-6000 Port Elizabeth, South Africa
关键词
on-machine metrology; in-process metrology; hybrid machining; ultra-precision manufacturing; cutting force measurement; tool nanopositioning; diamond turning; MINIMUM CHIP THICKNESS; PART I; MACHINE; TECHNOLOGIES; PREDICTION; SENSOR; MODEL;
D O I
10.3390/mi14101857
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Ultra-high-precision single-point diamond turning (SPDT) is the state-of-the-art machining technology for the advanced manufacturing of critical components with an optical surface finish and surface roughness down to one nanometer. One of the critical factors that directly affects the quality of the diamond-cutting process is the cutting force. Increasing the cutting force can induce tool wear, increase the cutting temperature, and amplify the positioning errors of the diamond tool caused by the applied cutting force. It is important to measure the cutting force during the SPDT process to monitor the tool wear and surface defects in real time. By measuring the cutting force in different cutting conditions, the optimum cutting parameters can be determined and the best surface accuracies with minimum surface roughness can be achieved. In this study a smart cutting tool for in-process force measurement and nanopositioning of the cutting tool for compensating the displacements of the diamond tool during the cutting process is designed and analyzed. The proposed smart cutting tool can measure applied forces to the diamond tool and correct the nanometric positioning displacements of the diamond tool in three dimensions. The proposed cutting tool is wireless and can be used in hybrid and intelligent SPDT platforms to achieve the best results in terms of optical surface finish. The simulation results are shown to be almost consistent with the results of the derived analytical model. The preliminary results pave the way for promising applications of the proposed smart cutting tool in SPDT applications in the future.
引用
收藏
页数:25
相关论文
共 46 条
[1]  
[Anonymous], 2022, Low-Voltage Piezoelectric Chips
[2]  
ASM Handbook, 1990, PROPERTIES SELECTION, V1, P2195
[3]  
Babatunde Odedeyi Peter., 2022, International Journal of Computational Methods and Experimental Measurements, V10, P329
[4]  
Bhowmik S, 2019, HYBRID MICROMACHININ, P61
[5]   Modelling the cutting edge radius size effect for force prediction in micro milling [J].
Bissacco, G. ;
Hansen, H. N. ;
Slunsky, J. .
CIRP ANNALS-MANUFACTURING TECHNOLOGY, 2008, 57 (01) :113-116
[6]   Tool life and surface integrity in turning titanium alloy [J].
Che-Haron, CH .
JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2001, 118 (1-3) :231-237
[7]   An in-process measurement method for repair of defective microstructures by using a fast tool servo with a force sensor [J].
Chen, Yuan-Liu ;
Wang, Shu ;
Shimizu, Yuki ;
Ito, So ;
Gao, Wei ;
Ju, Bing-Feng .
PRECISION ENGINEERING-JOURNAL OF THE INTERNATIONAL SOCIETIES FOR PRECISION ENGINEERING AND NANOTECHNOLOGY, 2015, 39 :134-142
[8]   Smart Cutting Tools and Smart Machining: Development Approaches, and Their Implementation and Application Perspectives [J].
Cheng, Kai ;
Niu, Zhi-Chao ;
Wang, Robin C. ;
Rakowski, Richard ;
Bateman, Richard .
CHINESE JOURNAL OF MECHANICAL ENGINEERING, 2017, 30 (05) :1162-1176
[9]   Size effect and minimum chip thickness in micromilling [J].
de Oliveira, Fernando Brandao ;
Rodrigues, Alessandro Roger ;
Coelho, Reginald Teixeira ;
de Souza, Adriano Fagali .
INTERNATIONAL JOURNAL OF MACHINE TOOLS & MANUFACTURE, 2015, 89 :39-54
[10]   Progress and perspective of high strain NBT-based lead-free piezoceramics and multilayer actuators [J].
Fan, Pengyuan ;
Liu, Kai ;
Ma, Weigang ;
Tan, Hua ;
Zhang, Qi ;
Zhang, Ling ;
Zhou, Changrong ;
Salamon, David ;
Zhang, Shan-Tao ;
Zhang, Yangjun ;
Nan, Bo ;
Zhang, Haibo .
JOURNAL OF MATERIOMICS, 2021, 7 (03) :508-544