Experimental Study on Effects of Triggering Modes on Thermal Runaway Characteristics of Lithium-Ion Battery

被引:3
|
作者
Dong, Yuanjin [1 ]
Meng, Jian [1 ]
Sun, Xiaomei [1 ]
Zhao, Peidong [1 ]
Sun, Peng [1 ]
Zheng, Bin [1 ]
机构
[1] ShanDong Univ Technol, Coll Transportat & Vehicle Engn, Zibo 255049, Peoples R China
来源
WORLD ELECTRIC VEHICLE JOURNAL | 2023年 / 14卷 / 10期
关键词
triggering mode; thermal runaway; lithium-ion battery; carbon neutrality; INTERNAL SHORT-CIRCUIT; TEMPERATURE; DISCHARGE; MECHANISM;
D O I
10.3390/wevj14100270
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
As an important component of new energy vehicles, the safety of lithium-ion batteries has attracted extensive attention. To reveal the mechanism and characteristics of ternary lithium-ion batteries under different trigger modes, an experimental system was established. The effects of different trigger modes on battery surface temperature, battery internal temperature, injection time, and battery voltage were analyzed. Among them, acupuncture, overheating, and overcharging are used as trigger conditions for mechanical, thermal, and electrical abuse. The results show that the injection time and surface peak temperature are positively correlated with the energy input before thermal runaway. Before the cell triggers abuse, the more input energy, the higher the cell surface temperature, the more serious the thermal runaway, and the higher the damage to the surrounding battery system. Under the same conditions, the intensity and damage degree of overcharge thermal runaway are greater than those of internal short circuit and overtemperature. The abnormal change of voltage suddenly rising and rapidly falling can be used as a condition to judge whether overcharge thermal runaway occurs. Finally, according to the temperature curves at different positions, the thermal diffusion law under different abuse conditions is summarized, which provides a basis for the safety design of the battery module.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Experimental Study on Thermal Runaway Behavior of Lithium-Ion Battery and Analysis of Combustible Limit of Gas Production
    Yang, Xinwei
    Wang, Hewu
    Li, Minghai
    Li, Yalun
    Li, Cheng
    Zhang, Yajun
    Chen, Siqi
    Shen, Hengjie
    Qian, Feng
    Feng, Xuning
    Ouyang, Minggao
    BATTERIES-BASEL, 2022, 8 (11):
  • [32] Experimental Study on Thermal Runaway Process of 18650 Lithium-Ion Battery under Different Discharge Currents
    Li, Lun
    Ju, Xiaoyu
    Zhou, Xiaodong
    Peng, Yang
    Zhou, Zhizuan
    Cao, Bei
    Yang, Lizhong
    MATERIALS, 2021, 14 (16)
  • [33] Thermal Runaway Online Warning Method for Lithium-ion Battery Based on Gas Characteristics
    Yang Q.
    Ma H.
    Duan D.
    Yan J.
    Gaodianya Jishu/High Voltage Engineering, 2022, 48 (03): : 1202 - 1211
  • [34] Thermal runaway behaviors of lithium-ion battery for electric vehicles: Experimental and modeling studies with realistic applications to a battery pack
    Wu, Jun
    Zhang, Xiong
    Chen, Hu
    Guo, Wei
    Yao, Jian
    Wei, Dan
    Zhu, Linpei
    Ouyang, Chenzhi
    Wang, Qingquan
    Hu, Qianqian
    Jin, Changyong
    Xu, Chengshan
    Feng, Xuning
    JOURNAL OF ENERGY STORAGE, 2024, 88
  • [35] Study on the influence of high rate charge and discharge on thermal runaway behavior of lithium-ion battery
    Huang, Yajun
    Zhao, Yinquan
    Bai, Wei
    Cao, Yang
    Xu, Weifeng
    Shen, Xiongqi
    Wang, Zhirong
    PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2024, 191 : 1483 - 1494
  • [36] Parameterized evaluation of thermal characteristics for a lithium-ion battery
    Gu, Li
    Gui, John Yupeng
    Wang, Jing, V
    Zhu, Guorong
    Kang, Jianqiang
    ENERGY, 2019, 178 : 21 - 32
  • [37] Experimental study on the thermal runaway and its propagation of a lithium-ion traction battery with NCM cathode under thermal abuse
    Wang H.-B.
    Li Y.
    Wang Q.-Z.
    Du Z.-M.
    Feng X.-N.
    Gongcheng Kexue Xuebao/Chinese Journal of Engineering, 2021, 43 (05): : 663 - 675
  • [38] Experimental Study on the Mechanism of Thermal Runaway Propagation in Lithium-ion Battery Pack for Electric Vehicles
    Jiang F.
    Zhang F.
    Xu C.
    Li C.
    Wang S.
    Ren Y.
    Feng X.
    Jixie Gongcheng Xuebao/Journal of Mechanical Engineering, 2021, 57 (14): : 23 - 31
  • [39] Effect of low temperature on thermal runaway and fire behaviors of 18650 lithium-ion battery: A comprehensive experimental study
    Kong, Depeng
    Zhao, Hengle
    Ping, Ping
    Zhang, Yue
    Wang, Gongquan
    PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2023, 174 : 448 - 459
  • [40] Experimental study on the characteristics of thermal runaway propagation process of cylindrical lithium-ion batteries
    Ke, Wei
    Zhang, Yanlin
    Zhou, Bo
    Wu, Chengyi
    Liu, Yan
    Xu, Min
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2024, 46 (01) : 11379 - 11394