Experimental Study on Effects of Triggering Modes on Thermal Runaway Characteristics of Lithium-Ion Battery

被引:3
|
作者
Dong, Yuanjin [1 ]
Meng, Jian [1 ]
Sun, Xiaomei [1 ]
Zhao, Peidong [1 ]
Sun, Peng [1 ]
Zheng, Bin [1 ]
机构
[1] ShanDong Univ Technol, Coll Transportat & Vehicle Engn, Zibo 255049, Peoples R China
来源
WORLD ELECTRIC VEHICLE JOURNAL | 2023年 / 14卷 / 10期
关键词
triggering mode; thermal runaway; lithium-ion battery; carbon neutrality; INTERNAL SHORT-CIRCUIT; TEMPERATURE; DISCHARGE; MECHANISM;
D O I
10.3390/wevj14100270
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
As an important component of new energy vehicles, the safety of lithium-ion batteries has attracted extensive attention. To reveal the mechanism and characteristics of ternary lithium-ion batteries under different trigger modes, an experimental system was established. The effects of different trigger modes on battery surface temperature, battery internal temperature, injection time, and battery voltage were analyzed. Among them, acupuncture, overheating, and overcharging are used as trigger conditions for mechanical, thermal, and electrical abuse. The results show that the injection time and surface peak temperature are positively correlated with the energy input before thermal runaway. Before the cell triggers abuse, the more input energy, the higher the cell surface temperature, the more serious the thermal runaway, and the higher the damage to the surrounding battery system. Under the same conditions, the intensity and damage degree of overcharge thermal runaway are greater than those of internal short circuit and overtemperature. The abnormal change of voltage suddenly rising and rapidly falling can be used as a condition to judge whether overcharge thermal runaway occurs. Finally, according to the temperature curves at different positions, the thermal diffusion law under different abuse conditions is summarized, which provides a basis for the safety design of the battery module.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Quantitative Analysis of Lithium-Ion Battery Eruption Behavior in Thermal Runaway
    Xing, Yu
    Wei, Ningning
    Li, Minghai
    BATTERIES-BASEL, 2024, 10 (06):
  • [22] Study on thermal runaway warning method of lithium-ion battery
    Ji, Changwei
    Zhang, Zhizu
    Wang, Bing
    Zhang, Shouqin
    Liu, Yangyi
    JOURNAL OF LOSS PREVENTION IN THE PROCESS INDUSTRIES, 2022, 78
  • [23] Influence of Cathode Materials on the Characteristics of Lithium-Ion Battery Gas Generation During Thermal Runaway
    Zhang, Ying
    Wang, Hong
    Yu, Hang
    Jia, Teng
    Ma, Chuyuan
    FIRE TECHNOLOGY, 2024,
  • [24] Thermal Runaway Characteristics of a Large Format Lithium-Ion Battery Module
    Cheng, Ximing
    Li, Tao
    Ruan, Xusong
    Wang, Zhenpo
    ENERGIES, 2019, 12 (16)
  • [25] Experimental Analysis of Thermal Runaway and Propagation in Lithium-Ion Battery Modules
    Lopez, Carlos F.
    Jeevarajan, Judith A.
    Mukherjee, Partha P.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2015, 162 (09) : A1905 - A1915
  • [26] Experimental Study on the Efficiency of Hydrogel on Suppressing Thermal Runaway Propagation of Lithium-Ion Battery
    Liu, Chunyuan
    Zhang, Guowei
    Yuan, Diping
    Jiang, Liming
    Fan, Yafei
    Kong, Depeng
    FIRE TECHNOLOGY, 2024,
  • [27] An Experimental Study on the Thermal Runaway Propagation of Cycling Aged Lithium-Ion Battery Modules
    Han, Zhuxin
    Zhao, Luyao
    Zhao, Jiajun
    Xu, Guo
    Liu, Hong
    Chen, Mingyi
    FIRE-SWITZERLAND, 2024, 7 (04):
  • [28] Investigation of thermal runaway propagation characteristics of lithium-ion battery modules under different trigger modes
    Lai, Xin
    Wang, Shuyu
    Wang, Huaibin
    Zheng, Yuejiu
    Feng, Xuning
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2021, 171
  • [29] Effects of heating position on the thermal runaway propagation of a lithium-ion battery module in a battery enclosure
    Li, Zijian
    Zhang, Peihong
    Shang, Rongxue
    APPLIED THERMAL ENGINEERING, 2023, 222
  • [30] Experimental study on suppression of thermal runaway in lithium-ion battery by mixed particle size water mist
    Zhang, Yan
    Peng, Wei
    Liu, Xiaoyong
    Ren, Junsheng
    Zang, Xue
    Xie, Qi
    Li, Jinhu
    PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2023, 179 : 189 - 198