ON WEAVING FRAMES IN HILBERT SPACES

被引:1
作者
Li, Dongwei [1 ]
Jiang, Jing [1 ]
Xu, Yuxiang [2 ]
机构
[1] Hefei Univ Technol, Sch Math, Hefei 230009, Peoples R China
[2] Univ Elect Sci & Technol China, Sch Math Sci, Chengdu 611731, Peoples R China
来源
OPERATORS AND MATRICES | 2023年 / 17卷 / 03期
关键词
Frames; weaving frames; Hilbert space; perturbation; TIGHT FRAMES; SIGNALS;
D O I
10.7153/oam-2023-17-53
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we obtain some new properties of weaving frames and present some conditions under which a family of frames is woven in Hilbert spaces. Some characterizations of weaving frames in terms of operators are given. We also give a condition associated with synthesis operators of frames such that the sequence of frames is woven. Finally, for a family of woven frames, we show that they are stable under invertible operators and small perturbations.
引用
收藏
页码:809 / 822
页数:14
相关论文
共 16 条
[1]   Multipliers for continuous frames in Hilbert spaces [J].
Balazs, P. ;
Bayer, D. ;
Rahimi, A. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (24)
[2]   WEAVING FRAMES [J].
Bemrose, Travis ;
Casazza, Peter G. ;
Groechenig, Karlheinz ;
Lammers, Mark C. ;
Lynch, Richard G. .
OPERATORS AND MATRICES, 2016, 10 (04) :1093-1116
[3]   Weaving Schauder frames [J].
Casazza, Peter G. ;
Freeman, Daniel ;
Lynch, Richard G. .
JOURNAL OF APPROXIMATION THEORY, 2016, 211 :42-60
[4]  
Casazza PG, 2015, 2015 INTERNATIONAL CONFERENCE ON SAMPLING THEORY AND APPLICATIONS (SAMPTA), P110, DOI 10.1109/SAMPTA.2015.7148861
[5]   Equal-norm tight frames with erasures [J].
Casazza, PG ;
Kovacevic, J .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 2003, 18 (2-4) :387-430
[6]   Tight frame: an efficient way for high-resolution image reconstruction [J].
Chan, RH ;
Riemenschneider, SD ;
Shen, LX ;
Shen, ZW .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2004, 17 (01) :91-115
[7]  
Christensen O., 2016, INTRO FRAMES RIESZ B, V2nd
[8]   Extensions of Bessel sequences to dual pairs of frames [J].
Christensen, Ole ;
Kim, Hong Oh ;
Kim, Rae Young .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2013, 34 (02) :224-233
[9]   PAINLESS NONORTHOGONAL EXPANSIONS [J].
DAUBECHIES, I ;
GROSSMANN, A ;
MEYER, Y .
JOURNAL OF MATHEMATICAL PHYSICS, 1986, 27 (05) :1271-1283
[10]   A CLASS OF NONHARMONIC FOURIER SERIES [J].
DUFFIN, RJ ;
SCHAEFFER, AC .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1952, 72 (MAR) :341-366