Univariate exploratory data analysis of satellite telemetry

被引:1
|
作者
Praveen, Mv Ramachandra [1 ]
Choudhury, Sushabhan [2 ]
Kuchhal, Piyush [2 ]
Singh, Rajesh [3 ,4 ]
Pandey, Purnendu Shekhar [5 ]
Galletta, Antonino [6 ]
机构
[1] Univ Petr & Energy Studies UPES, Dehra Dun, India
[2] Univ Petr & Energy Studies UPE, Elect Engn Dept, Dehra Dun, India
[3] Uttaranchal Univ, Uttaranchal Inst Technol, Dehra Dun, India
[4] Univ Int Iberoamer, Dept Project Management, Campeche, CP, Mexico
[5] AKTU, GL Bajaj Inst Technol & Management, Dept Elect & Commun Engn, Greater Noida, India
[6] Univ Messina, Messina, Italy
关键词
autonomy; exploratory data analysis; fault detection; machine learning; satellites; PROCESS FAULT-DETECTION; QUANTITATIVE MODEL; SPACECRAFT;
D O I
10.1002/sat.1498
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
Large low Earth orbit satellite constellations require machine learning methods for enabling autonomy in health keeping of the satellites. Autonomy in health keeping entail's fault detection, isolation and reconfiguration. However, prior to model building, it becomes imperative to conduct exploratory data analysis of the data to gain an intuition of data and to decide the best model. Univariate exploratory data analysis has been carried out on a BUS CURRENT sensor of electrical power system of a low Earth orbit satellite to gain an understanding of data. Various aspects of data like presence of outliers, sampling frequency, missing values, comparison of imputation methods to fill missing values seasonality and trend analysis, stationarity test on data, rolling mean and autocorrelation and partial auto correlation plots have been made, and a detailed statistical analysis of results has been conducted.
引用
收藏
页码:57 / 85
页数:29
相关论文
共 50 条
  • [31] THE CONTRIBUTION OF EXPLORATORY STATISTICS TO THE ANALYSIS OF QUALITATIVE DATA
    Huber, Gunter L.
    Guertler, Leo
    Gento, Samuel
    PERSPECTIVA EDUCACIONAL, 2018, 57 (01): : 50 - 69
  • [32] CHEMOSTAT: EXPLORATORY MULTIVARIATE DATA ANALYSIS SOFTWARE
    Helfer, Gilson A.
    Bock, Fernanda
    Marder, Luciano
    Furtado, Joao C.
    da Costa, Adilson B.
    Ferrao, Marco F.
    QUIMICA NOVA, 2015, 38 (04): : 575 - 579
  • [33] Satellite Early Anomaly Detection Using an Advanced Transformer Architecture for Non-Stationary Telemetry Data
    Zhao, Haotian
    Qiu, Shi
    Yang, Jianan
    Guo, Jinsheng
    Liu, Ming
    Cao, Xibin
    IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, 2024, 70 (01) : 4213 - 4225
  • [34] Perspective Exploratory Methods for Multidimensional Data Analysis
    Valis, D.
    Zak, L.
    Vintr, Z.
    2019 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL ENGINEERING AND ENGINEERING MANAGEMENT (IEEM), 2019, : 426 - 430
  • [35] Exploratory reconstructability analysis of accident TBI data
    Zwick, Martin
    Carney, Nancy
    Nettleton, Rosemary
    INTERNATIONAL JOURNAL OF GENERAL SYSTEMS, 2018, 47 (02) : 174 - 191
  • [36] EXPLORATORY DATA ANALYSIS ON UNEMPLOYMENT RATES IN USA
    Luo, Jia
    Shang, Junfeng
    ADVANCES AND APPLICATIONS IN STATISTICS, 2016, 48 (04) : 303 - 316
  • [37] Exploratory Data Analysis of Fault Injection Campaigns
    Cerveira, Frederico
    Kocsis, Imre
    Barbosa, Raul
    Madeira, Henrique
    Pataricza, Andras
    2018 IEEE INTERNATIONAL CONFERENCE ON SOFTWARE QUALITY, RELIABILITY AND SECURITY (QRS 2018), 2018, : 191 - 202
  • [38] Microarrays, pattern recognition and exploratory data analysis
    Mertens, BJA
    STATISTICS IN MEDICINE, 2003, 22 (11) : 1879 - 1899
  • [39] Principle of Learning Metrics for Exploratory Data Analysis
    Samuel Kaski
    Janne Sinkkonen
    Journal of VLSI signal processing systems for signal, image and video technology, 2004, 37 : 177 - 188
  • [40] Uncharted forest: A technique for exploratory data analysis
    Kneale, Casey
    Brown, Steven D.
    TALANTA, 2018, 189 : 71 - 78