An integrated demand response dispatch strategy for low-carbon energy supply park considering electricity-hydrogen-carbon coordination

被引:9
|
作者
Bu, Feifei [1 ]
Wang, Shiqian [1 ]
Bai, Hongkun [1 ]
Wang, Yuanyuan [1 ]
Yu, Lifang [2 ]
Liu, Haoming [2 ]
机构
[1] State Grid Henan Econ Res Inst, Zhengzhou 450052, Peoples R China
[2] Hohai Univ, Coll Energy & Elect Engn, Nanjing 211100, Jiangsu, Peoples R China
关键词
Integrated energy system; Integrated electricity-hydrogen-carbon system; Hydrogen utilization; Integrated demand response; P2G; POWER; SYSTEM; UNCERTAINTY; WIND; HEAT; GAS;
D O I
10.1016/j.egyr.2023.04.120
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Driven by the goal of 'carbon peak, carbon neutrality', an integrated demand response strategy for integrated electricity-hydrogen energy systems is proposed for low-carbon energy supply parks considering the multi-level and multi-energy characteristics of campus-based microgrids. Firstly, considering the spatial and temporal complementary nature of wind and photovoltaic generation and energy utilization, the energy flow framework of the park is built based on the electricity and hydrogen energy carriers. Clean energy is employed as the main energy supply, and power, heat, cooling, and gas loads are considered energy consumption. Secondly, the operation mechanism of coupled hydrogen storage, hydrogen fuel cell, and carbon capture equipment is analyzed in the two-stage power-to-gas conversion process. Thirdly, considering the operating costs and environmental costs of the park, an integrated demand response dispatch model is constructed for the coupled electricity-hydrogen-carbon system while satisfying the system equipment constraints, network constraints and energy balance constraints of the park system. Finally, Case study in an energy supply park system is implemented. The dispatch results of the integrated demand response with customer participation in the conventional, electricity-hydrogen and electricity-hydrogen-carbon modes are compared to verify the effectiveness of the proposed strategy in renewable accommodation, environmental protection, and economic benefits. (c) 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under theCCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页码:1092 / 1101
页数:10
相关论文
共 50 条
  • [31] Hybrid-timescale optimal dispatch strategy for electricity and heat integrated energy system considering integrated demand response
    Chong, Zhenxiao
    Yang, Lijun
    Jiang, Yaning
    Zhou, Wei
    RENEWABLE ENERGY, 2024, 232
  • [32] Low-carbon Economic Dispatch of Integrated Energy System Considering Carbon Capture Power Plant and Multi-utilization of Hydrogen Energy
    Liu Y.
    Hu Z.
    Chen J.
    Weng C.
    Gao M.
    Liu S.
    Dianli Xitong Zidonghua/Automation of Electric Power Systems, 2024, 48 (01): : 31 - 40
  • [33] Low-carbon optimization operation of integrated energy system considering comprehensive demand response under improved carbon trading mechanism
    Li, Jing
    Gao, Xiying
    Guo, Dan
    Xia, Jingyi
    Jia, Zhuting
    Wang, Yue
    FRONTIERS IN ENERGY RESEARCH, 2024, 12
  • [34] Low-carbon economic dispatch of integrated energy system with carbon capture power plant and multiple utilization of hydrogen energy
    Wang, Jiarui
    Ji, Xiu
    Meng, Xiangdong
    Bai, Yang
    Li, Meiyue
    Frontiers in Energy Research, 2024, 12
  • [35] Optimal dispatch of park integrated energy system considering demand response incentive mechanism
    Wang L.-Y.
    Lin J.-L.
    Song M.-Q.
    Dong H.-Q.
    Zeng M.
    Kongzhi yu Juece/Control and Decision, 2023, 38 (11): : 3192 - 3200
  • [36] Low-carbon collaborative dual-layer optimization for energy station considering joint electricity and heat demand response
    Xu, Shaoshan
    Wu, Xingchen
    Shen, Jun
    Hua, Haochen
    FRONTIERS IN ENERGY, 2025, 19 (01) : 100 - 113
  • [37] Two-Stage Low-Carbon Economic Dispatch of Integrated Demand Response-Enabled Integrated Energy System with Ladder-Type Carbon Trading
    Zhang S.
    Li W.
    Li Z.
    Zhang X.
    Lu Z.
    Ge X.
    Energy Engineering: Journal of the Association of Energy Engineering, 2023, 120 (01): : 181 - 199
  • [38] Low-Carbon Dispatch of an Integrated Energy System Considering Confidence Intervals for Renewable Energy Generation
    Shi Y.
    Li W.
    Fan G.
    Zhang L.
    Yang F.
    Energy Engineering: Journal of the Association of Energy Engineering, 2024, 121 (02): : 461 - 482
  • [39] Low-carbon economic optimal dispatch strategy of integrated energy system considering electric-heat flexible load and carbon trading
    Jiang, Xin
    Ai, Qian
    Chen, Yun
    Wang, Jiayu
    2022 IEEE SUSTAINABLE POWER AND ENERGY CONFERENCE (ISPEC), 2022,
  • [40] LOW CARBON ECONOMIC DISPATCHING METHOD OF PARK INTEGRATED ENERGY SYSTEM CONSIDERING PROPORTION OF DEMAND RESPONSE
    Wei Z.
    Wen P.
    Liang Z.
    Jia Y.
    Gao L.
    Huo L.
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2023, 44 (10): : 38 - 45