The Long Short-Term Memory (LSTM) Model Combines with Technical Analysis to Forecast Cryptocurrency Prices

被引:0
|
作者
Dingyu, Fu [1 ]
Ismail, Mohd Tahir [1 ]
机构
[1] Univ Sains Malaysia, Sch Math Sci, USsm 11800, Penang, Malaysia
关键词
LSTM; Forecasting; Technical analysis; Bitcoin; Modeling;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Cryptocurrency has a considerable market value and massive trading volume. Moreover, it is also known for its extreme volatility. Thus, this paper intends to attempt a new approach to forecast cryptocurrency prices by combining the long short-term memory (LSTM) model and technical analysis. The LSTM model has the advantages of a recurrent neural network and solves the gradient disappearance problem that adjusts weights and biases of long- or short-term memory, which is suitable for processing time series problems. Meanwhile, technical analysis is still a critical price trend analytical method. Overall, the results show that the combined methods get a better effect than only using a single price as a feature. Under the same condition, only using price as features for LSTM model accuracy rate is more than 40% for two different error tolerance, but the model accuracy rate will be improved by more than 60% and 90% if traditional technical indicators are combined as features at the best condition. Moreover, the error rate also reduces for the combined approach compared to the single approach.
引用
收藏
页码:149 / 158
页数:10
相关论文
共 50 条
  • [1] Time Series Analysis of Cryptocurrency Prices Using Long Short-Term Memory
    Fleischer, Jacques Phillipe
    von Laszewski, Gregor
    Theran, Carlos
    Bautista, Yohn Jairo Parra
    ALGORITHMS, 2022, 15 (07)
  • [2] Implementation of Long Short-Term Memory for Gold Prices Forecasting
    Nurhambali, M. R.
    Angraini, Y.
    Fitrianto, A.
    MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES, 2024, 18 (02): : 399 - 422
  • [3] A forecast model of short-term wind speed based on the attention mechanism and long short-term memory
    Xing, Wang
    Qi-liang, Wu
    Gui-rong, Tan
    Dai-li, Qian
    Ke, Zhou
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (15) : 45603 - 45623
  • [4] Forecasting Flower Prices by Long Short-Term Memory Model with Optuna
    Chen, Chieh-Huang
    Lin, Ying-Lei
    Pai, Ping-Feng
    ELECTRONICS, 2024, 13 (18)
  • [5] Modelling Stock Prices Prediction with Long Short-Term Memory (LSTM): A Black Box Approach
    Bokhare, Anuja
    Rao, Madhuri
    Oliver, M. Pavie
    Rai, Rohit
    Adesara, Umang
    ARTIFICIAL INTELLIGENCE: THEORY AND APPLICATIONS, VOL 1, AITA 2023, 2024, 843 : 65 - 73
  • [6] Malicious Traffic classification Using Long Short-Term Memory (LSTM) Model
    K. Naresh Kumar Thapa
    N. Duraipandian
    Wireless Personal Communications, 2021, 119 : 2707 - 2724
  • [7] Malicious Traffic classification Using Long Short-Term Memory (LSTM) Model
    Thapa, K. Naresh Kumar
    Duraipandian, N.
    WIRELESS PERSONAL COMMUNICATIONS, 2021, 119 (03) : 2707 - 2724
  • [8] Brain tumor detection: a long short-term memory (LSTM)-based learning model
    Javaria Amin
    Muhammad Sharif
    Mudassar Raza
    Tanzila Saba
    Rafiq Sial
    Shafqat Ali Shad
    Neural Computing and Applications, 2020, 32 : 15965 - 15973
  • [9] Brain tumor detection: a long short-term memory (LSTM)-based learning model
    Amin, Javaria
    Sharif, Muhammad
    Raza, Mudassar
    Saba, Tanzila
    Sial, Rafiq
    Shad, Shafqat Ali
    NEURAL COMPUTING & APPLICATIONS, 2020, 32 (20) : 15965 - 15973
  • [10] Multilayer Long Short-Term Memory (LSTM) Neural Networks in Time Series Analysis
    Malinovic, Nemanja S.
    Predic, Bratislav B.
    Roganovic, Milos
    2020 55TH INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION, COMMUNICATION AND ENERGY SYSTEMS AND TECHNOLOGIES (IEEE ICEST 2020), 2020, : 11 - 14