Biology-inspired graph neural network encodes reactome and reveals biochemical reactions of disease

被引:5
作者
Burkhart, Joshua G. [1 ]
Wu, Guanming [2 ]
Song, Xubo [3 ]
Raimondi, Francesco [4 ]
McWeeney, Shannon
Wong, Melissa H. [2 ,5 ]
Deng, Youping [1 ]
机构
[1] Univ Hawaii, John A Burns Sch Med, Dept Quantitat Hlth Sci, Honolulu, HI 96813 USA
[2] Oregon Hlth & Sci Univ, Dept Med Informat & Clin Epidemiol, Div Bioinformat & Computat Biol, Portland, OR 97239 USA
[3] Oregon Hlth & Sci Univ, Dept Comp Sci & Elect Engn, Portland, OR 97239 USA
[4] Scuola Normale Super Pisa, BIO SNS, I-56126 Pisa, Italy
[5] Oregon Hlth & Sci Univ, Dept Cell Dev & Canc Biol, Portland, OR 97201 USA
来源
PATTERNS | 2023年 / 4卷 / 07期
基金
美国国家科学基金会;
关键词
ANTIOXIDANT ENZYME EXPRESSION; GENE-EXPRESSION; PROTEASOME; MODEL; TRANSCRIPTOME; METABOLISM; PSORIASIS; RESOURCE; SYSTEMS; TISSUE;
D O I
10.1016/j.patter.2023.100758
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Functional heterogeneity of healthy human tissues complicates interpretation of molecular studies, impeding precision therapeutic target identification and treatment. Considering this, we generated a graph neural network with Reactome-based architecture and trained it using 9,115 samples from Genotype-Tissue Expression (GTEx). Our graph neural network (GNN) achieves adjusted Rand index (ARI) = 0.7909, while a Resnet18 control model achieves ARI = 0.7781, on 370 held-out healthy human tissue samples from The Cancer Genome Atlas (TCGA), despite the Resnet18 using over 600 times the parameters. Our GNN also succeeds in separating 83 healthy skin samples from 95 lesional psoriasis samples, revealing that upregulation of 26S-and NUB1-mediated degradation of NEDD8, UBD, and their conjugates is central to the largest perturbed reaction network component in psoriasis. We show that our results are not discoverable using traditional differential expression and hypergeometric pathway enrichment analyses yet are supported by separate human multi-omics and small-molecule mouse studies, suggesting future molecular disease studies may benefit from similar GNN analytical approaches.
引用
收藏
页数:15
相关论文
共 96 条
[1]   Mass-spectrometric exploration of proteome structure and function [J].
Aebersold, Ruedi ;
Mann, Matthias .
NATURE, 2016, 537 (7620) :347-355
[2]   Differential expression analysis for sequence count data [J].
Anders, Simon ;
Huber, Wolfgang .
GENOME BIOLOGY, 2010, 11 (10)
[3]   On reaction network implementations of neural networks [J].
Anderson, David F. ;
Joshi, Badal ;
Deshpande, Abhishek .
JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2021, 18 (177)
[4]   Gene Ontology: tool for the unification of biology [J].
Ashburner, M ;
Ball, CA ;
Blake, JA ;
Botstein, D ;
Butler, H ;
Cherry, JM ;
Davis, AP ;
Dolinski, K ;
Dwight, SS ;
Eppig, JT ;
Harris, MA ;
Hill, DP ;
Issel-Tarver, L ;
Kasarskis, A ;
Lewis, S ;
Matese, JC ;
Richardson, JE ;
Ringwald, M ;
Rubin, GM ;
Sherlock, G .
NATURE GENETICS, 2000, 25 (01) :25-29
[5]   Anomaly detection with convolutional Graph Neural Networks [J].
Atkinson, Oliver ;
Bhardwaj, Akanksha ;
Englert, Christoph ;
Ngairangbam, Vishal S. ;
Spannowsky, Michael .
JOURNAL OF HIGH ENERGY PHYSICS, 2021, 2021 (08)
[6]   A proteomics strategy to elucidate functional protein-protein interactions applied to EGF signaling [J].
Blagoev, B ;
Kratchmarova, I ;
Ong, SE ;
Nielsen, M ;
Foster, LJ ;
Mann, M .
NATURE BIOTECHNOLOGY, 2003, 21 (03) :315-318
[7]   Ten Quick Tips for Using the Gene Ontology [J].
Blake, Judith A. .
PLOS COMPUTATIONAL BIOLOGY, 2013, 9 (11)
[8]  
Blighe K., 2019, ENHANCEDVOLCANO PUBL, V1, P10, DOI DOI 10.18129/B9.BIOC.2019
[9]   Tissue specificity and the human protein interaction network [J].
Bossi, Alice ;
Lehner, Ben .
MOLECULAR SYSTEMS BIOLOGY, 2009, 5
[10]   Post-translational modifications and their applications in eye research [J].
Chen, Bing-Jie ;
Lam, Thomas Chuen ;
Liu, Long-Qian ;
To, Chi-Ho .
MOLECULAR MEDICINE REPORTS, 2017, 15 (06) :3923-3935