Bohr type inequality for Cesaro and Bernardi integral operator on simply connected domain

被引:1
作者
Allu, Vasudevarao [1 ]
Ghosh, Nirupam [2 ]
机构
[1] Indian Inst Technol Bhubaneswar, Sch Basic Sci, Bhubaneswar 752050, India
[2] Indian Stat Inst, Stat & Math Unit, 8th Mile,Mysore Rd, Bangalore 560059, India
来源
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES | 2023年 / 133卷 / 02期
关键词
Analytic functions; Bohr radius; Cesaro operator; Bernardi integral; Primary; POWER-SERIES; THEOREM;
D O I
10.1007/s12044-023-00741-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we study the Bohr type inequality for Ces & aacute;ro operator and Bernardi integral operator acting on the space of analytic functions defined on a simply connected domain containing the unit disk D.
引用
收藏
页数:10
相关论文
共 28 条
[1]   Bohr's phenomenon for analytic functions into the exterior of a compact convex body [J].
Abu Muhanna, Y. ;
Ali, Rosihan M. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 379 (02) :512-517
[2]   Bohr's phenomenon in subordination and bounded harmonic classes [J].
Abu Muhanna, Yusuf .
COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2010, 55 (11) :1071-1078
[3]   Multidimensional analogues of Bohr's theorem on power series [J].
Aizenberg, L .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 128 (04) :1147-1155
[4]   ON THE BOHR INEQUALITY WITH A FIXED ZERO COEFFICIENT [J].
Alkhaleefah, Seraj A. ;
Kayumov, Ilgiz R. ;
Ponnusamy, Saminathan .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 147 (12) :5263-5274
[5]   Bohr's power series theorem in several variables [J].
Boas, HP ;
Khavinson, D .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 125 (10) :2975-2979
[6]  
Bohr H, 1914, P LOND MATH SOC, V13, P1
[7]  
Brown A, 1965, ACTA SCI MATH SZEGED, V26, P125
[8]   Improved Bohr's Inequality for Shifted Disks [J].
Evdoridis, Stavros ;
Ponnusamy, Saminathan ;
Rasila, Antti .
RESULTS IN MATHEMATICS, 2021, 76 (01)
[9]  
Fournier R, 2010, CRM PROC & LECT NOTE, V51, P165
[10]   Some properties of fractional integrals II [J].
Hardy, GH ;
Littlewood, JE .
MATHEMATISCHE ZEITSCHRIFT, 1932, 34 :403-439