EARR: Using rules to enhance the embedding of knowledge graph

被引:5
作者
Li, Jin [1 ]
Xiang, Jinpeng [1 ]
Cheng, Jianhua [2 ]
机构
[1] Harbin Engn Univ, Coll Comp Sci & Technol, Harbin, Peoples R China
[2] Harbin Engn Univ, Coll Intelligent Syst Sci & Engn, Harbin, Peoples R China
关键词
Knowledge graph; Knowledge graph embedding; Rule extraction; Rule enhanced knowledge graph embedding;
D O I
10.1016/j.eswa.2023.120831
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Knowledge graphs have been receiving increasing attention from researchers. However, most of these graphs are incomplete, leading to the rise of knowledge graph completion as a prominent task. The goal of knowledge graph completion is to find missing relations in a knowledge graph. Knowledge graph embedding represents the entities and relations in a low-dimensional embedding space, simplifying operations and allowing for integration with knowledge graph completion tasks. Several popular embedding models, such as TransE, TransH, TransR, TuckER, RotatE, and others have achieved impressive results on knowledge graph completion tasks. However, most of these methods do not incorporate background knowledge that could enhance the quality of knowledge embedding. Logic rules are adaptable and scalable, which can enrich background knowledge, and separating the attributes of entities can improve the relevance of relations and facilitate the accuracy of logic rule extraction. Thus, we propose a novel method, named Entity-Attribute-Relation-Rule (EARR), which separates attributes from entities and uses logic rules to extend the dataset, improving the accuracy of knowledge graph completion tasks. We define a total of six rules in this paper, including Rule 1-3, Rule 5, and Rule 6 for entities, and Rule 4 for entities and attributes. We evaluate our method based on the task of link prediction through two kinds of experiments. In the basic experiment, we compare our method with three benchmark models, namely, TransE, TransH, and TransR. In the experiment with different size datasets, FB24K and CoDEx, we evaluate our method on different size datasets with different models, including TransE, TuckER, and RotatE. The experimental results indicate that EARR can improve the quality of knowledge graph embedding.
引用
收藏
页数:14
相关论文
共 37 条
[1]   DBpedia: A nucleus for a web of open data [J].
Auer, Soeren ;
Bizer, Christian ;
Kobilarov, Georgi ;
Lehmann, Jens ;
Cyganiak, Richard ;
Ives, Zachary .
SEMANTIC WEB, PROCEEDINGS, 2007, 4825 :722-+
[2]  
Baader F, 2018, SIXTEENTH INTERNATIONAL CONFERENCE ON PRINCIPLES OF KNOWLEDGE REPRESENTATION AND REASONING, P319
[3]  
Balazevic I, 2019, 2019 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING AND THE 9TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (EMNLP-IJCNLP 2019), P5185
[4]   The Semantic Web - A new form of Web content that is meaningful to computers will unleash a revolution of new possibilities [J].
Berners-Lee, T ;
Hendler, J ;
Lassila, O .
SCIENTIFIC AMERICAN, 2001, 284 (05) :34-+
[5]  
Bollacker Kurt, 2008, P ACM SIGMOD INT C M, P1247, DOI DOI 10.1145/1376616.1376746
[6]  
Bordes Antoine, 2013, ADV NEURAL INFORM PR, P2787
[7]  
Cao ZS, 2021, AAAI CONF ARTIF INTE, V35, P6894
[8]   Personalized Recommendations using Knowledge Graphs: A Probabilistic Logic Programming Approach [J].
Catherine, Rose ;
Cohen, William .
PROCEEDINGS OF THE 10TH ACM CONFERENCE ON RECOMMENDER SYSTEMS (RECSYS'16), 2016, :325-332
[9]   A review: Knowledge reasoning over knowledge graph [J].
Chen, Xiaojun ;
Jia, Shengbin ;
Xiang, Yang .
EXPERT SYSTEMS WITH APPLICATIONS, 2020, 141
[10]  
Fan Miao.., 2014, P 28 PACIFIC ASIA C, P328