Mid-infrared integrated silicon-germanium ring resonator with high Q-factor

被引:14
作者
Armand, Remi [1 ]
Perestjuk, Marko [1 ,2 ]
Della Torre, Alberto [1 ]
Sinobad, Milan [3 ]
Mitchell, Arnan [2 ]
Boes, Andreas [2 ,4 ,5 ]
Hartmann, Jean-Michel [6 ]
Fedeli, Jean-Marc [6 ]
Reboud, Vincent [6 ]
Brianceau, Pierre [6 ]
De Rossi, Alfredo [7 ]
Combrie, Sylvain [7 ]
Monat, Christelle [1 ]
Grillet, Christian [1 ]
机构
[1] Univ Lyon, Inst Nanotechnol Lyon INL, CNRS, UMR 5270,Ecole Cent Lyon, F-69131 Ecully, France
[2] RMIT Univ, Sch Engn, Melbourne, Vic 3001, Australia
[3] DESY, D-22607 Hamburg, Germany
[4] Univ Adelaide, Inst Photon & Adv Sensing, Adelaide, SA 5005, Australia
[5] Univ Adelaide, Sch Elect & Mech Engn, Adelaide, SA 5005, Australia
[6] Univ Grenoble Alpes, CEA Leti, F-38054 Grenoble, France
[7] Thales Res & Technol, Campus Polytech, F-91767 Palaiseau, France
基金
欧盟地平线“2020”;
关键词
WAVE-GUIDES; SUPERCONTINUUM GENERATION; PHOTONICS; PLATFORM;
D O I
10.1063/5.0149324
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We report the realization of a silicon-germanium on silicon ring resonator with high Q-factor at mid-infrared wavelengths. The fabricated ring exhibits a loaded Q-factor of 236 000 at the operating wavelength of 4.18 mu m. Considering the combined waveguide propagation losses and bending losses, which are measured to be below 0.2 dB/cm, even higher Q-factors could be achieved on this platform. Furthermore, our dispersion engineering of the waveguides should make these microrings suitable for nonlinear optical applications. These results pave the way for sensing applications and nonlinear optics in the mid-infrared range.
引用
收藏
页数:6
相关论文
共 31 条
[1]   Nonlinear optical response of low loss silicon germanium waveguides in the mid-infrared [J].
Carletti, L. ;
Ma, P. ;
Yu, Y. ;
Luther-Davies, B. ;
Hudson, D. ;
Monat, C. ;
Orobtchouk, R. ;
Madden, S. ;
Moss, D. J. ;
Brun, M. ;
Ortiz, S. ;
Labeye, P. ;
Nicoletti, S. ;
Grillet, C. .
OPTICS EXPRESS, 2015, 23 (07) :8261-8271
[2]   Mid-infrared supercontinuum generation in a low-loss germanium-on-silicon waveguide [J].
Della Torre, Alberto ;
Sinobad, Milan ;
Armand, Remi ;
Luther-Davies, Barry ;
Ma, Pan ;
Madden, Stephen ;
Mitchell, Arnan ;
Moss, David J. ;
Hartmann, Jean-Michel ;
Reboud, Vincent ;
Fedeli, Jean-Marc ;
Monat, Christelle ;
Grillet, Christian .
APL PHOTONICS, 2021, 6 (01)
[3]   Stability analysis of the spatiotemporal Lugiato-Lefever model for Kerr optical frequency combs in the anomalous and normal dispersion regimes [J].
Godey, Cyril ;
Balakireva, Irina V. ;
Coillet, Aurelien ;
Chembo, Yanne K. .
PHYSICAL REVIEW A, 2014, 89 (06)
[4]   Silicon-chip mid-infrared frequency comb generation [J].
Griffith, Austin G. ;
Lau, Ryan K. W. ;
Cardenas, Jaime ;
Okawachi, Yoshitomo ;
Mohanty, Aseema ;
Fain, Romy ;
Lee, Yoon Ho Daniel ;
Yu, Mengjie ;
Phare, Christopher T. ;
Poitras, Carl B. ;
Gaeta, Alexander L. ;
Lipson, Michal .
NATURE COMMUNICATIONS, 2015, 6
[5]   Mid-infrared GaAs/AlGaAs micro-ring resonators characterized via thermal tuning [J].
Haas, Julian ;
Artmann, Philipp ;
Mizaikoff, Boris .
RSC ADVANCES, 2019, 9 (15) :8594-8599
[6]   Germanium-on-silicon waveguides for long-wave integrated photonics: ring resonance and thermo-optics [J].
Kozak, Dmitry A. ;
Tyndall, Nathan F. ;
Pruessner, Marcel W. ;
Rabinovich, William S. ;
Stievater, Todd H. .
OPTICS EXPRESS, 2021, 29 (10) :15443-15451
[7]   CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects [J].
Levy, Jacob S. ;
Gondarenko, Alexander ;
Foster, Mark A. ;
Turner-Foster, Amy C. ;
Gaeta, Alexander L. ;
Lipson, Michal .
NATURE PHOTONICS, 2010, 4 (01) :37-40
[8]  
Limonov MF, 2017, NAT PHOTONICS, V11, P543, DOI [10.1038/nphoton.2017.142, 10.1038/NPHOTON.2017.142]
[9]   Broadband mid-infrared frequency comb generation in a Si3N4 microresonator [J].
Luke, Kevin ;
Okawachi, Yoshitomo ;
Lamont, Michael R. E. ;
Gaeta, Alexander L. ;
Lipson, Michal .
OPTICS LETTERS, 2015, 40 (21) :4823-4826
[10]  
lumosity, ABOUT US