Factorial multiparameter Hecke von Neumann algebras and representations of groups acting on right-angled buildings

被引:1
作者
Raum, Sven [1 ,2 ]
Skalski, Adam [1 ]
机构
[1] Polish Acad Sci, Inst Math, ul Sniadeckich 8, PL-00656 Warsaw, Poland
[2] Stockholm Univ, Dept Math, Albanovagen 28, S-11419 Stockholm, Sweden
来源
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES | 2023年 / 172卷
基金
欧洲研究理事会; 瑞典研究理事会;
关键词
Hecke von Neumann algebra; II(1)factor Right-angled Coxeter group; Right-angled building; Graph product; Character space; FREE-PRODUCTS;
D O I
10.1016/j.matpur.2023.02.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We obtain a complete characterisation of factorial multiparameter Hecke von Neumann algebras associated with right-angled Coxeter groups. Considering their l(p)-convolution algebra analogues, we exhibit an interesting parameter dependence, contrasting phenomena observed earlier for group Banach algebras. Translated to Iwahori-Hecke von Neumann algebras, these results allow us to draw conclusions on spherical representation theory of groups acting on right-angled buildings, which are in strong contrast to behaviour of spherical representations in the affine case. We also investigate certain graph product representations of right-angled Coxeter groups and note that our von Neumann algebraic structure results show that these are finite factor representations. Further classifying a suitable family of them up to unitary equivalence allows us to reveal high-dimensional Euclidean subspaces of the space of extremal characters of right-angled Coxeter groups. (c) 2023 The Author(s). Published by Elsevier Masson SAS. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页码:265 / 298
页数:34
相关论文
共 50 条
[21]  
Davis M.W., 2008, London Mathematical Society Monographs Series, V32
[22]   Weighted L2-cohomology of coxeter groups [J].
Davis, Michael W. ;
Dymara, Jan ;
Januszkiewicz, Tadeusz ;
Okun, Boris .
GEOMETRY & TOPOLOGY, 2007, 11 :47-138
[23]   On convoluters on Lp-spaces [J].
Daws, Matthew ;
Spronk, Nico .
STUDIA MATHEMATICA, 2019, 245 (01) :15-31
[24]   Open subgroups of the automorphism group of a right-angled building [J].
De Medts, Tom ;
Silva, Ana C. .
GEOMETRIAE DEDICATA, 2019, 203 (01) :1-23
[25]   Universal groups for right-angled buildings [J].
De Medts, Tom ;
Silva, Ana C. ;
Struyve, Koen .
GROUPS GEOMETRY AND DYNAMICS, 2018, 12 (01) :231-287
[26]  
Deitmar A, 2014, UNIVERSITEXT, P1, DOI 10.1007/978-3-319-05792-7
[27]  
Dixmier J, 1969, C ALGEBRES LEURS REP
[28]   FREE-PRODUCTS OF HYPERFINITE VON NEUMANN ALGEBRAS AND FREE DIMENSION [J].
DYKEMA, K .
DUKE MATHEMATICAL JOURNAL, 1993, 69 (01) :97-119
[29]   Thin buildings [J].
Dymara, J .
GEOMETRY & TOPOLOGY, 2006, 10 :667-694
[30]  
Figa-Talamanca A., 1991, HARMONIC ANAL REPRES