Scattering theory for the subcritical wave equation with inverse square potential

被引:0
作者
Miao, Changxing [1 ]
Shen, Ruipeng [2 ]
Zhao, Tengfei [3 ]
机构
[1] Inst Appl Phys & Computat Math, POB 8009, Beijing 100088, Peoples R China
[2] Tianjin Univ, Ctr Appl Math, Tianjin, Peoples R China
[3] Univ Sci & Technol Beijing, Sch Math & Phys, Beijing 100083, Peoples R China
来源
SELECTA MATHEMATICA-NEW SERIES | 2023年 / 29卷 / 03期
关键词
Primary; 35L05; 35L71; GLOBAL WELL-POSEDNESS; CRITICAL SOBOLEV NORM; SCHRODINGER-EQUATIONS; ASYMPTOTIC-BEHAVIOR; RADIAL SOLUTIONS; INITIAL DATA; TIME DECAY; BLOW-UP; REGULARITY;
D O I
10.1007/s00029-023-00846-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the scattering theory for the defocusing energy subcritical wave equations with an inverse square potential. By employing the energy flux method we establish energy flux estimates on the light cone. Then by the characteristic line method and radiation theorem, we show that the radial finite-energy solutions scatter to free waves outside of light cones. Using Morawetz estimates we then obtain the scattering theory for radial solutions with finite weighted energy initial data.
引用
收藏
页数:30
相关论文
共 47 条