Southern Ocean Surface Temperatures and Cloud Biases in Climate Models Connected to the Representation of Glacial Deep Ocean Circulation

被引:7
作者
Sherriff-Tadano, Sam [1 ,7 ]
Abe-Ouchi, Ayako [1 ,2 ,4 ]
Yoshimori, Masakazu [1 ]
Ohgaito, Rumi [2 ,5 ]
Vadsaria, Tristan [1 ]
Chan, Wing-Le [1 ]
Hotta, Haruka [1 ]
Kikuchi, Maki [3 ]
Kodama, Takanori [1 ,6 ]
Oka, Akira [1 ]
Suzukia, Kentaroh [1 ]
机构
[1] Univ Tokyo, Atmosphere & Ocean Res Inst, Kashiwa, Japan
[2] Japan Agcy Marine Earth Sci & Technol, Yokosuka, Japan
[3] Japan Aerosp Explorat Agcy, Earth Observat Res Ctr, Tsukuba, Japan
[4] Natl Inst Polar Res, Tachikawa, Japan
[5] Tokio Marine dR Co Ltd, Tokyo, Japan
[6] Univ Tokyo, Komaba Inst Sci, Grad Sch Arts & Sci, Tokyo, Japan
[7] Univ Leeds, Sch Earth & Environm, Leeds, England
关键词
Thermohaline circulation; Paleoclimate; Climate models; Southern Ocean; MERIDIONAL OVERTURNING CIRCULATION; ICE SHEETS; THERMOHALINE CIRCULATION; EQUILIBRIUM RESPONSE; MAXIMUM EXPERIMENTS; IN-SITU; SEA-ICE; CONSTRAINTS; PHASE; SENSITIVITY;
D O I
10.1175/JCLI-D-22-0221.1
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Simulating and reproducing the past Atlantic meridional overturning circulation (AMOC) with comprehen-sive climate models are essential to understanding past climate changes as well as to testing the ability of the models in sim-ulating different climates. At the Last Glacial Maximum (LGM), reconstructions show a shoaling of the AMOC compared to modern climate. However, almost all state-of-the-art climate models simulate a deeper LGM AMOC. Here, it is shown that this paleodata-model discrepancy is partly related to the climate model biases in modern sea surface temperatures (SST) over the Southern Ocean (70 degrees-45 degrees S). Analysis of model outputs from three phases of the Paleoclimate Model Inter -comparison Project shows that models with warm Southern Ocean SST biases tend to simulate a deepening of the LGM AMOC, while the opposite is observed in models with cold SST biases. As a result, a positive correlation of 0.41 is found between SST biases and LGM AMOC depth anomalies. Using sensitivity experiments with a climate model, we show, as an example, that changes in parameters associated with the fraction of cloud thermodynamic phase in a climate model re-duce the biases in the warm SST over the modern Southern Ocean. The less biased versions of the model then reproduce a colder Southern Ocean at the LGM, which increases formation of Antarctic Bottom Water and causes shoaling of the LGM AMOC, without affecting the LGM climate in other regions. The results highlight the importance of sea surface con-ditions and clouds over the Southern Ocean in simulating past and future global climates.
引用
收藏
页码:3849 / 3866
页数:18
相关论文
共 96 条
  • [81] Surface Constraints on the Depth of the Atlantic Meridional Overturning Circulation: Southern Ocean versus North Atlantic
    Sun, Shantong
    Eisenman, Ian
    Zanna, Laure
    Stewart, Andrew L.
    [J]. JOURNAL OF CLIMATE, 2020, 33 (08) : 3125 - 3149
  • [82] Observational constraints on mixed-phase clouds imply higher climate sensitivity
    Tan, Ivy
    Storelvmo, Trude
    Zelinka, Mark D.
    [J]. SCIENCE, 2016, 352 (6282) : 224 - 227
  • [83] Glacial cooling and climate sensitivity revisited
    Tierney, Jessica E.
    Zhu, Jiang
    King, Jonathan
    Malevich, Steven B.
    Hakim, Gregory J.
    Poulsen, Christopher J.
    [J]. NATURE, 2020, 584 (7822) : 569 - +
  • [84] Importance of the mixed-phase cloud distribution in the control climate for assessing the response of clouds to carbon dioxide increase: a multi-model study
    Tsushima, Yoko
    Emori, S.
    Ogura, T.
    Kimoto, M.
    Webb, M. J.
    Williams, K. D.
    Ringer, M. A.
    Soden, B. J.
    Li, B.
    Andronova, N.
    [J]. CLIMATE DYNAMICS, 2006, 27 (2-3) : 113 - 126
  • [85] Constraints on the magnitude and patterns of ocean cooling at the Last Glacial Maximum
    Waelbroeck, C.
    Paul, A.
    Kucera, M.
    Rosell-Mele, A.
    Weinelt, M.
    Schneider, R.
    Mix, A. C.
    Abelmann, A.
    Armand, L.
    Bard, E.
    Barker, S.
    Barrows, T. T.
    Benway, H.
    Cacho, I.
    Chen, M. -T.
    Cortijo, E.
    Crosta, X.
    de Vernal, A.
    Dokken, T.
    Duprat, J.
    Elderfield, H.
    Eynaud, F.
    Gersonde, R.
    Hayes, A.
    Henry, M.
    Hillaire-Marcel, C.
    Huang, C. -C.
    Jansen, E.
    Juggins, S.
    Kallel, N.
    Kiefer, T.
    Kienast, M.
    Labeyrie, L.
    Leclaire, H.
    Londeix, L.
    Mangin, S.
    Matthiessen, J.
    Marret, F.
    Meland, M.
    Morey, A. E.
    Mulitza, S.
    Pflaumann, U.
    Pisias, N. G.
    Radi, T.
    Rochon, A.
    Rohling, E. J.
    Sbaffi, L.
    Schaefer-Neth, C.
    Solignac, S.
    Spero, H.
    [J]. NATURE GEOSCIENCE, 2009, 2 (02) : 127 - 132
  • [86] Improved Climate Simulation by MIROC5. Mean States, Variability, and Climate Sensitivity
    Watanabe, Masahiro
    Suzuki, Tatsuo
    O'ishi, Ryouta
    Komuro, Yoshiki
    Watanabe, Shingo
    Emori, Seita
    Takemura, Toshihiko
    Chikira, Minoru
    Ogura, Tomoo
    Sekiguchi, Miho
    Takata, Kumiko
    Yamazaki, Dai
    Yokohata, Tokuta
    Nozawa, Toru
    Hasumi, Hiroyasu
    Tatebe, Hiroaki
    Kimoto, Masahide
    [J]. JOURNAL OF CLIMATE, 2010, 23 (23) : 6312 - 6335
  • [87] The modern and glacial overturning circulation in the Atlantic Ocean in PMIP coupled model simulations
    Weber, S. L.
    Drijfhout, S. S.
    Abe-Ouchi, A.
    Crucifix, M.
    Eby, M.
    Ganopolski, A.
    Murakami, S.
    Otto-Bliesner, B.
    Peltier, W. R.
    [J]. CLIMATE OF THE PAST, 2007, 3 (01) : 51 - 64
  • [88] Global analysis of cloud phase and ice crystal orientation from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) data using attenuated backscattering and depolarization ratio
    Yoshida, R.
    Okamoto, H.
    Hagihara, Y.
    Ishimoto, H.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2010, 115
  • [89] A Comparison of Climate Feedback Strength between CO2 Doubling and LGM Experiments
    Yoshimori, Masakazu
    Yokohata, Tokuta
    Abe-Ouchi, Ayako
    [J]. JOURNAL OF CLIMATE, 2009, 22 (12) : 3374 - 3395
  • [90] Zanna L., 2020, SURFACE CONSTRAINTS