Dynamic proteome trade-offs regulate bacterial cell size and growth in fluctuating nutrient environments

被引:4
作者
Kratz, Josiah C. [1 ]
Banerjee, Shiladitya [2 ]
机构
[1] Carnegie Mellon Univ, Dept Biol Sci, Pittsburgh, PA 15213 USA
[2] Carnegie Mellon Univ, Dept Phys, Pittsburgh, PA 15213 USA
基金
美国国家卫生研究院;
关键词
ESCHERICHIA-COLI; DIVISION; PPGPP;
D O I
10.1038/s42003-023-04865-4
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
A quantitative theory connects bacterial growth and division rates to proteome allocation and cell size control in time-varying nutrient environments. Bacteria dynamically regulate cell size and growth to thrive in changing environments. While previous studies have characterized bacterial growth physiology at steady-state, a quantitative understanding of bacterial physiology in time-varying environments is lacking. Here we develop a quantitative theory connecting bacterial growth and division rates to proteome allocation in time-varying nutrient environments. In such environments, cell size and growth are regulated by trade-offs between prioritization of biomass accumulation or division, resulting in decoupling of single-cell growth rate from population growth rate. Specifically, bacteria transiently prioritize biomass accumulation over production of division machinery during nutrient upshifts, while prioritizing division over growth during downshifts. When subjected to pulsatile nutrient concentration, we find that bacteria exhibit a transient memory of previous metabolic states due to the slow dynamics of proteome reallocation. This allows for faster adaptation to previously seen environments and results in division control which is dependent on the time-profile of fluctuations.
引用
收藏
页数:13
相关论文
共 63 条
[1]   Tracking bacterial lineages in complex and dynamic environments with applications for growth control and persistence [J].
Bakshi, Somenath ;
Leoncini, Emanuele ;
Baker, Charles ;
Canas-Duarte, Silvia J. ;
Okumus, Burak ;
Paulsson, Johan .
NATURE MICROBIOLOGY, 2021, 6 (06) :783-791
[2]   Inflating bacterial cells by increased protein synthesis [J].
Basan, Markus ;
Zhu, Manlu ;
Dai, Xiongfeng ;
Warren, Mya ;
Sevin, Daniel ;
Wang, Yi-Ping ;
Hwa, Terence .
MOLECULAR SYSTEMS BIOLOGY, 2015, 11 (10)
[3]   Fundamental limits on the rate of bacterial growth and their influence on proteomic composition [J].
Belliveau, Nathan M. ;
Chure, Griffin ;
Hueschen, Christina L. ;
Garcia, Hernan G. ;
Kondev, Jane ;
Fisher, Daniel S. ;
Theriot, Julie A. ;
Phillips, Rob .
CELL SYSTEMS, 2021, 12 (09) :924-+
[4]   A bacterial size law revealed by a coarse-grained model of cell physiology [J].
Bertaux, Francois ;
von Kugelgen, Julius ;
Marguerat, Samuel ;
Shahrezaei, Vahid .
PLOS COMPUTATIONAL BIOLOGY, 2020, 16 (09)
[5]   Slower growth ofEscherichia colileads to longer survival in carbon starvation due to a decrease in the maintenance rate [J].
Biselli, Elena ;
Schink, Severin Josef ;
Gerland, Ulrich .
MOLECULAR SYSTEMS BIOLOGY, 2020, 16 (06)
[6]   Phenotypic heterogeneity promotes adaptive evolution [J].
Bodi, Zoltan ;
Farkas, Zoltan ;
Nevozhay, Dmitry ;
Kalapis, Dorottya ;
Lazar, Viktoria ;
Csorgo, Balint ;
Nyerges, Akos ;
Szamecz, Bela ;
Fekete, Gergely ;
Papp, Balazs ;
Araujo, Hugo ;
Oliveira, Jose L. ;
Moura, Gabriela ;
Santos, Manuel A. S. ;
Szekely, Tamas, Jr. ;
Balazsi, Gabor ;
Pal, Csaba .
PLOS BIOLOGY, 2017, 15 (05)
[7]   ppGpp is a bacterial cell size regulator [J].
Buke, Ferhat ;
Grilli, Jacopo ;
Lagomarsino, Marco Cosentino ;
Bokinsky, Gregory ;
Tans, Sander J. .
CURRENT BIOLOGY, 2022, 32 (04) :870-+
[8]   Protein degradation sets the fraction of active ribosomes at vanishing growth [J].
Calabrese, Ludovico ;
Grilli, Jacopo ;
Osella, Matteo M. ;
Kempes, Christopher ;
Lagomarsino, Marco Cosentino M. ;
Ciandrini, Luca ;
Haugh, Jason M. ;
Igoshin, Oleg A. .
PLOS COMPUTATIONAL BIOLOGY, 2022, 18 (05)
[9]   A Constant Size Extension Drives Bacterial Cell Size Homeostasis [J].
Campos, Manuel ;
Surovtsev, Ivan V. ;
Kato, Setsu ;
Paintdakhi, Ahmad ;
Beltran, Bruno ;
Ebmeier, Sarah E. ;
Jacobs-Wagner, Christine .
CELL, 2014, 159 (06) :1433-1446
[10]  
Colin A, 2021, ELIFE, V10, DOI [10.7554/eLife.67495, 10.7554/eLife.67495.sa1, 10.7554/eLife.67495.sa2]