ROBUST JOINT MODELLING OF LEFT-CENSORED LONGITUDINAL DATA AND SURVIVAL DATA WITH APPLICATION TO HIV VACCINE STUDIES

被引:0
|
作者
Yu, Tingting [1 ,2 ]
Wu, Lang [3 ]
Qiu, Jin [4 ]
Gilbert, Peter B. [5 ]
机构
[1] Harvard Pilgrim Hlth Care Inst, Boston, MA 02215 USA
[2] Harvard Med Sch, Boston, MA 02115 USA
[3] Univ British Columbia, Dept Stat, Vancouver, BC, Canada
[4] Zhejiang Univ Finance & Econ, Dept Stat, Hangzhou, Peoples R China
[5] Univ Washington, Dept Biostat, Seattle, WA USA
来源
ANNALS OF APPLIED STATISTICS | 2023年 / 17卷 / 02期
关键词
Biomarker; outliers; robust joint model; h-likelihood; left censoring; INFERENCE;
D O I
10.1214/22-AOAS1656
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In jointly modelling longitudinal and survival data, the longitudinal data may be complex in the sense that they may contain outliers and may be left censored. Motivated from an HIV vaccine study, we propose a robust method for joint models of longitudinal and survival data, where the outliers in longi-tudinal data are addressed using a multivariate t-distribution for b-outliers and using an M-estimator for e-outliers. We also propose a computationally effi-cient method for approximate likelihood inference. The proposed method is evaluated by simulation studies. Based on the proposed models and method, we analyze the HIV vaccine data and find a strong association between lon-gitudinal biomarkers and the risk of HIV infection.
引用
收藏
页码:1017 / 1037
页数:21
相关论文
共 50 条
  • [31] Robust inference with censored survival data
    Deleamont, Pierre-Yves
    Ronchetti, Elvezio
    SCANDINAVIAN JOURNAL OF STATISTICS, 2022, 49 (04) : 1496 - 1533
  • [32] A Multiple Imputation Approach for Estimating Rank Correlation With Left-Censored Data
    Williamson, John M.
    Crawford, Sara B.
    Lin, Hung-Mo
    STATISTICS IN BIOPHARMACEUTICAL RESEARCH, 2010, 2 (04): : 540 - 548
  • [33] A Comparison of the β-Substitution Method and a Bayesian Method for Analyzing Left-Censored Data
    Tran Huynh
    Quick, Harrison
    Ramachandran, Gurumurthy
    Banerjee, Sudipto
    Stenzel, Mark
    Sandler, Dale P.
    Engel, Lawrence S.
    Kwok, Richard K.
    Blair, Aaron
    Stewart, Patricia A.
    ANNALS OF OCCUPATIONAL HYGIENE, 2016, 60 (01): : 56 - 73
  • [34] Management of left-censored data in dietary exposure assessment of chemical substances
    European Food Safety Authority
    EFSA JOURNAL, 2010, 8 (03)
  • [35] Bayesian analysis of left-censored data using Weibull mixture model
    Navid Feroze
    Muhammad Aslam
    Soft Computing, 2022, 26 : 375 - 394
  • [36] Methods for Handling Left-Censored Data in Quantitative Microbial Risk Assessment
    Canales, Robert A.
    Wilson, Amanda M.
    Pearce-Walker, Jennifer I.
    Verhougstraete, Marc P.
    Reynolds, Kelly A.
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2018, 84 (20)
  • [37] Assessment of left-censored data treatment methods using stochastic simulation
    da Silva, Fabio Henrique Rodrigues
    Pinto, Eber Jose de Andrade
    RBRH-REVISTA BRASILEIRA DE RECURSOS HIDRICOS, 2023, 28
  • [38] Bayesian analysis of left-censored data using Weibull mixture model
    Feroze, Navid
    Aslam, Muhammad
    SOFT COMPUTING, 2022, 26 (01) : 375 - 394
  • [39] Joint analysis of left-censored longitudinal biomarker and binary outcome via latent class modeling
    Li, Menghan
    Kong, Lan
    STATISTICS IN MEDICINE, 2018, 37 (13) : 2162 - 2173
  • [40] Bayesian Modeling of Enteric Virus Density in Wastewater Using Left-Censored Data
    Tsuyoshi Kato
    Takayuki Miura
    Satoshi Okabe
    Daisuke Sano
    Food and Environmental Virology, 2013, 5 : 185 - 193