ROBUST JOINT MODELLING OF LEFT-CENSORED LONGITUDINAL DATA AND SURVIVAL DATA WITH APPLICATION TO HIV VACCINE STUDIES

被引:0
|
作者
Yu, Tingting [1 ,2 ]
Wu, Lang [3 ]
Qiu, Jin [4 ]
Gilbert, Peter B. [5 ]
机构
[1] Harvard Pilgrim Hlth Care Inst, Boston, MA 02215 USA
[2] Harvard Med Sch, Boston, MA 02115 USA
[3] Univ British Columbia, Dept Stat, Vancouver, BC, Canada
[4] Zhejiang Univ Finance & Econ, Dept Stat, Hangzhou, Peoples R China
[5] Univ Washington, Dept Biostat, Seattle, WA USA
来源
ANNALS OF APPLIED STATISTICS | 2023年 / 17卷 / 02期
关键词
Biomarker; outliers; robust joint model; h-likelihood; left censoring; INFERENCE;
D O I
10.1214/22-AOAS1656
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In jointly modelling longitudinal and survival data, the longitudinal data may be complex in the sense that they may contain outliers and may be left censored. Motivated from an HIV vaccine study, we propose a robust method for joint models of longitudinal and survival data, where the outliers in longi-tudinal data are addressed using a multivariate t-distribution for b-outliers and using an M-estimator for e-outliers. We also propose a computationally effi-cient method for approximate likelihood inference. The proposed method is evaluated by simulation studies. Based on the proposed models and method, we analyze the HIV vaccine data and find a strong association between lon-gitudinal biomarkers and the risk of HIV infection.
引用
收藏
页码:1017 / 1037
页数:21
相关论文
共 50 条
  • [21] A semiparametric alternative to the Heckman correction: application with left-censored data on parental transfers
    Lu Wang
    Yixiao Jiang
    Zhaochen He
    Empirical Economics, 2024, 66 : 1847 - 1866
  • [22] A class of asymmetric regression models for left-censored data
    Saulo, Helton
    Leao, Jeremias
    Nobre, Juvencio
    Balakrishnan, Narayanaswamy
    BRAZILIAN JOURNAL OF PROBABILITY AND STATISTICS, 2021, 35 (01) : 62 - 84
  • [23] Joint modeling of quantitative longitudinal data and censored survival time
    Jacqmin-Gadda, H
    Thiébaut, R
    Dartigues, JF
    REVUE D EPIDEMIOLOGIE ET DE SANTE PUBLIQUE, 2004, 52 (06): : 502 - 510
  • [24] A multivariate cure model for left-censored and right-censored data with application to colorectal cancer screening patterns
    Hagar, Yolanda C.
    Harvey, Danielle J.
    Beckett, Laurel A.
    STATISTICS IN MEDICINE, 2016, 35 (19) : 3347 - 3367
  • [25] The inverse power Lindley distribution in the presence of left-censored data
    Coelho-Barros, Emilio A.
    Mazucheli, Josmar
    Achcar, Jorge A.
    Parede Barco, Kelly Vanessa
    Tovar Cuevas, Jose Rafael
    JOURNAL OF APPLIED STATISTICS, 2018, 45 (11) : 2081 - 2094
  • [26] Comparison of Methods for Analyzing Left-Censored Occupational Exposure Data
    Tran Huynh
    Ramachandran, Gurumurthy
    Banerjee, Sudipto
    Monteiro, Joao
    Stenzel, Mark
    Sandler, Dale P.
    Engel, Lawrence S.
    Kwok, Richard K.
    Blair, Aaron
    Stewart, Patricia A.
    ANNALS OF OCCUPATIONAL HYGIENE, 2014, 58 (09): : 1126 - 1142
  • [27] Extension of the SAEM algorithm to left-censored data in nonlinear mixed-effects model:: Application to HIV dynamics model
    Samson, Adeline
    Lavielle, Marc
    Mentre, France
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2006, 51 (03) : 1562 - 1574
  • [28] A systematic review on the use of methods for left-censored biomarker data
    Thiele, Dominik
    Koenig, Inke R.
    GENETIC EPIDEMIOLOGY, 2020, 44 (05) : 521 - 522
  • [29] Box-Cox transfonnation of left-censored data with application to the analysis of coronary artery calcification and pharmacokinetic data
    Han, C
    Kronmal, R
    STATISTICS IN MEDICINE, 2004, 23 (23) : 3671 - 3679
  • [30] Flexible parametric joint modelling of longitudinal and survival data
    Crowther, Michael J.
    Abrams, Keith R.
    Lambert, Paul C.
    STATISTICS IN MEDICINE, 2012, 31 (30) : 4456 - 4471