A Novel Fusion Model of Hand-Crafted Features With Deep Convolutional Neural Networks for Classification of Several Chest Diseases Using X-Ray Images

被引:15
作者
Malik, Hassaan [1 ]
Anees, Tayyaba [2 ]
Chaudhry, Muhammad Umar [3 ]
Gono, Radomir [4 ]
Jasinski, Michal [4 ,5 ]
Leonowicz, Zbigniew [4 ,5 ]
Bernat, Petr [4 ]
机构
[1] Univ Management & Technol, Sch Syst & Technol, Dept Comp Sci, Lahore 54000, Pakistan
[2] Univ Management & Technol, Sch Syst & Technol, Dept Software Engn, Lahore 54000, Pakistan
[3] MNS Univ Agr, Dept Comp Sci, Multan 60000, Pakistan
[4] VSB Tech Univ Ostrava, Fac Elect Engn & Comp Sci, Dept Elect Power Engn, Ostrava 70800, Czech Republic
[5] Wroclaw Univ Sci & Technol, Fac Elect Engn, Dept Elect Engn Fundamentals, PL-50370 Wroclaw, Poland
关键词
COVID-19; Feature extraction; Pulmonary diseases; Lungs; Image segmentation; Convolutional neural networks; Computed tomography; deep learning; pneumonia; TB; X-rays; DCNN; feature extraction; COVID-19; SEGMENTATION; TUBERCULOSIS; RADIOGRAPHS;
D O I
10.1109/ACCESS.2023.3267492
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
With the continuing global pandemic of coronavirus (COVID-19) sickness, it is critical to seek diagnostic approaches that are both effective and rapid to limit the number of people infected with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The results of recent research suggest that radiological images include important information related to COVID-19 and other chest diseases. As a result, the use of deep learning (DL) to assist in the automated diagnosis of chest diseases may prove useful as a diagnostic tool in the future. In this study, we propose a novel fusion model of hand-crafted features with deep convolutional neural networks (DCNNs) for classifying ten different chest diseases such as COVID-19, lung cancer (LC), atelectasis (ATE), consolidation lung (COL), tuberculosis (TB), pneumothorax (PNET), edema (EDE), pneumonia (PNEU), pleural thickening (PLT), and normal using chest X-rays (CXR). The method that has been suggested is split down into three distinct parts. The first step involves utilizing the Info-MGAN network to perform segmentation on the raw CXR data to construct lung images of ten different chest diseases. In the second step, the segmented lung images are fed into a novel pipeline that extracts discriminatory features by using hand-crafted techniques such as SURF and ORB, and then these extracted features are fused to the trained DCNNs. At last, various machine learning (ML) models have been used as the last layer of the DCNN models for the classification of chest diseases. Comparison is made between the performance of various proposed architectures for classification, all of which integrate DCNNs, key point extraction methods, and ML models. We were able to attain a classification accuracy of 98.20% for testing by utilizing the VGG-19 model with a softmax layer in conjunction with the ORB technique. Screening for COVID-19 and other lung ailments can be accomplished using the method that has been proposed. The robustness of the model was further confirmed by statistical analyses of the datasets using McNemar's and ANOVA tests respectively.
引用
收藏
页码:39243 / 39268
页数:26
相关论文
共 50 条
  • [31] COVID-19 detection in X-ray images using convolutional neural networks
    Arias-Garzon, Daniel
    Alzate-Grisales, Jesus Alejandro
    Orozco-Arias, Simon
    Arteaga-Arteaga, Harold Brayan
    Bravo-Ortiz, Mario Alejandro
    Mora-Rubio, Alejandro
    Saborit-Torres, Jose Manuel
    Serrano, Joaquim aengel Montell
    Vaya, Maria de la Iglesia
    Cardona-Morales, Oscar
    Tabares-Soto, Reinel
    MACHINE LEARNING WITH APPLICATIONS, 2021, 6
  • [32] An efficient deep neural network model for tuberculosis detection using chest X-ray images
    Balamurugan M.
    Balamurugan R.
    Neural Computing and Applications, 2024, 36 (24) : 14775 - 14796
  • [33] Detecting pulmonary diseases using deep features in X-ray images
    Vieira, Pablo
    Sousa, Orrana
    Magalhaes, Deborah
    Rabelo, Ricardo
    Silva, Romuere
    PATTERN RECOGNITION, 2021, 119
  • [34] COVID-19 and pneumonia diagnosis from chest X-ray images using convolutional neural networks
    Muhab Hariri
    Ercan Avşar
    Network Modeling Analysis in Health Informatics and Bioinformatics, 12
  • [35] Pneumonia Classification and Analysis in Chest X-ray by Means of Convolutional Neural Networks
    Comas, Diego S.
    Amalfitano, Agustin
    Simon Gonzalez, Luciana
    Meschino, Gustavo J.
    Ballarin, Virginia L.
    ADVANCES IN BIOENGINEERING AND CLINICAL ENGINEERING, SABI 2022, 2024, 105 : 447 - 454
  • [36] COVID-19 and pneumonia diagnosis from chest X-ray images using convolutional neural networks
    Hariri, Muhab
    Avsar, Ercan
    NETWORK MODELING AND ANALYSIS IN HEALTH INFORMATICS AND BIOINFORMATICS, 2023, 12 (01):
  • [37] Effective Utilization of Multiple Convolutional Neural Networks for Chest X-Ray Classification
    Rammuni Silva R.S.
    Fernando P.
    SN Computer Science, 3 (6)
  • [38] A survey on indoor RGB-D semantic segmentation: from hand-crafted features to deep convolutional neural networks
    Fahimeh Fooladgar
    Shohreh Kasaei
    Multimedia Tools and Applications, 2020, 79 : 4499 - 4524
  • [39] Survey on Diagnosing CORONA VIRUS from Radiography Chest X-ray Images Using Convolutional Neural Networks
    Thirukrishna, J. T.
    Krishna, Sanda Reddy Sai
    Shashank, Policherla
    Srikanth, S.
    Raghu, V.
    WIRELESS PERSONAL COMMUNICATIONS, 2022, 124 (03) : 2261 - 2270
  • [40] Classification of COVID-19 in chest X-ray images using DeTraC deep convolutional neural network
    Abbas, Asmaa
    Abdelsamea, Mohammed M.
    Gaber, Mohamed Medhat
    APPLIED INTELLIGENCE, 2021, 51 (02) : 854 - 864