Floquet engineering with quantum optimal control theory

被引:6
作者
Castro, Alberto [1 ,2 ,3 ,4 ]
De Giovannini, Umberto [3 ,4 ,5 ]
Sato, Shunsuke A. [3 ,4 ,6 ]
Huebener, Hannes [3 ,4 ]
Rubio, Angel [3 ,4 ,7 ,8 ,9 ]
机构
[1] Univ Zaragoza, Inst Biocomputat & Phys Complex Syst, Zaragoza 50018, Spain
[2] ARAID Fdn, Zaragoza 50018, Spain
[3] Max Planck Inst Struct & Dynam Matter, D-22761 Hamburg, Germany
[4] Ctr Free Electron Laser Sci, D-22761 Hamburg, Germany
[5] Univ Palermo, Dipartimento Fis & Chim Emilio Segre, Via Archirafi 36, I-90123 Palermo, Italy
[6] Univ Tsukuba, Ctr Computat Sci, Tsukuba 3058577, Japan
[7] Flatiron Inst, Ctr Computat Quantum Phys CCQ, 162 Fifth Ave, New York, NY 10010 USA
[8] Univ Basque Country, Nanobio Spect Grp, San Sebastian 20018, Spain
[9] Univ Basque Country, ETSF, San Sebastian 20018, Spain
来源
NEW JOURNAL OF PHYSICS | 2023年 / 25卷 / 04期
关键词
Floquet engineering; materials design; laser-driven materials; optimal control theory; BLOCH STATES;
D O I
10.1088/1367-2630/accb05
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Floquet engineering consists in the modification of physical systems by the application of periodic time-dependent perturbations. The search for the shape of the periodic perturbation that best modifies the properties of a system in order to achieve some predefined metastable target behavior can be formulated as an optimal control problem. We discuss several ways to formulate and solve this problem. We present, as examples, some applications in the context of material science, although the methods discussed here are valid for any quantum system (from molecules and nanostructures to extended periodic and non periodic quantum materials). In particular, we show how one can achieve the manipulation of the Floquet pseudo-bandstructure of a transition metal dichalcogenide monolayer (MoS2).
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Pseudospin-selective Floquet band engineering in black phosphorus
    Zhou, Shaohua
    Bao, Changhua
    Fan, Benshu
    Zhou, Hui
    Gao, Qixuan
    Zhong, Haoyuan
    Lin, Tianyun
    Liu, Hang
    Yu, Pu
    Tang, Peizhe
    Meng, Sheng
    Duan, Wenhui
    Zhou, Shuyun
    NATURE, 2023, 614 (7946) : 75 - +
  • [42] MODELING STUDENT ENGAGEMENT USING OPTIMAL CONTROL THEORY
    Lewis, Debra
    JOURNAL OF GEOMETRIC MECHANICS, 2022, 14 (01) : 131 - 150
  • [43] Optimizing cancer treatment using optimal control theory
    Abougarair, Ahmed J.
    Bakouri, Mohsen
    Alduraywish, Abdulrahman
    Mrehel, Omar G.
    Alqahtani, Abdulrahman
    Alqahtani, Tariq
    Alharbi, Yousef
    Samsuzzaman, Md
    AIMS MATHEMATICS, 2024, 9 (11): : 31740 - 31769
  • [44] Pontryagin's maximum principle in optimal control theory
    Arutyunov A.V.
    Journal of Mathematical Sciences, 1999, 94 (3) : 1311 - 1365
  • [45] Quantum speed limits: from Heisenberg's uncertainty principle to optimal quantum control
    Deffner, Sebastian
    Campbell, Steve
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2017, 50 (45)
  • [46] NEWTON METHODS FOR THE OPTIMAL CONTROL OF CLOSED QUANTUM SPIN SYSTEMS
    Ciaramella, G.
    Borzi, A.
    Dirr, G.
    Wachsmuth, D.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2015, 37 (01) : A319 - A346
  • [47] Properties of dissipative Floquet Majorana modes using a quantum dot
    Forcellini, Nicole
    Cao, Zhan
    Liu, Dong E.
    PHYSICAL REVIEW B, 2023, 107 (19)
  • [48] Representation of Hamilton–Jacobi Equation in Optimal Control Theory with Unbounded Control Set
    Arkadiusz Misztela
    Journal of Optimization Theory and Applications, 2020, 185 : 361 - 383
  • [49] Application of Optimal Control Theory to the HEV Dynamic Process Based Control Method
    Ou Jiajie
    Li Lifu
    Ou Jiajie
    2014 PROCEEDINGS OF THE 9TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE & EDUCATION (ICCSE 2014), 2014, : 718 - 722
  • [50] Recoil control of deepwater drilling riser system based on optimal control theory
    Liu, Xiuquan
    Liu, Zhaowei
    Wang, Xianglei
    Zhang, Nan
    Qiu, Na
    Chang, Yuanjiang
    Chen, Guoming
    OCEAN ENGINEERING, 2021, 220