Predicting severity in COVID-19 disease using sepsis blood gene expression signatures

被引:12
|
作者
Baghela, Arjun [1 ]
An, Andy [1 ]
Zhang, Peter [2 ]
Acton, Erica [3 ]
Gauthier, Jeff [4 ]
Brunet-Ratnasingham, Elsa [5 ,6 ]
Blimkie, Travis [1 ]
Freue, Gabriela Cohen [7 ]
Kaufmann, Daniel [6 ,8 ]
Lee, Amy H. Y. [3 ]
Levesque, Roger C. [4 ]
Hancock, Robert E. W. [1 ,2 ]
机构
[1] Univ British Columbia UBC, Dept Microbiol & Immunol, Vancouver, BC, Canada
[2] Asep Med, Vancouver, BC, Canada
[3] Simon Fraser Univ, Dept Mol Biol & Biochem, Burnaby, BC, Canada
[4] Univ Laval, Inst Biol Integrat & Syst IBIS, Dept Microbiol Infectiol & immunol, Quebec City, PQ, Canada
[5] Univ Montreal, Dept Microbiol Infectiol & Immunol, Montreal, PQ, Canada
[6] Ctr Rech CHUM, Montreal, PQ, Canada
[7] Univ British Columbia, Dept Stat, Vancouver, BC, Canada
[8] Univ Montreal, Dept Med, Montreal, PQ, Canada
关键词
TOLERANCE;
D O I
10.1038/s41598-023-28259-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Severely-afflicted COVID-19 patients can exhibit disease manifestations representative of sepsis, including acute respiratory distress syndrome and multiple organ failure. We hypothesized that diagnostic tools used in managing all-cause sepsis, such as clinical criteria, biomarkers, and gene expression signatures, should extend to COVID-19 patients. Here we analyzed the whole blood transcriptome of 124 early (1-5 days post-hospital admission) and late (6-20 days post-admission) sampled patients with confirmed COVID-19 infections from hospitals in Quebec, Canada. Mechanisms associated with COVID-19 severity were identified between severity groups (ranging from mild disease to the requirement for mechanical ventilation and mortality), and established sepsis signatures were assessed for dysregulation. Specifically, gene expression signatures representing pathophysiological events, namely cellular reprogramming, organ dysfunction, and mortality, were significantly enriched and predictive of severity and lethality in COVID-19 patients. Mechanistic endotypes reflective of distinct sepsis aetiologies and therapeutic opportunities were also identified in subsets of patients, enabling prediction of potentially-effective repurposed drugs. The expression of sepsis gene expression signatures in severely-afflicted COVID-19 patients indicates that these patients should be classified as having severe sepsis. Accordingly, in severe COVID-19 patients, these signatures should be strongly considered for the mechanistic characterization, diagnosis, and guidance of treatment using repurposed drugs.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Predicting severity in COVID-19 disease using sepsis blood gene expression signatures
    Arjun Baghela
    Andy An
    Peter Zhang
    Erica Acton
    Jeff Gauthier
    Elsa Brunet-Ratnasingham
    Travis Blimkie
    Gabriela Cohen Freue
    Daniel Kaufmann
    Amy H. Y. Lee
    Roger C. Levesque
    Robert E. W. Hancock
    Scientific Reports, 13
  • [2] Predicting Disease Severity and Outcome in COVID-19 Patients
    Tjendra, Youley
    Al Mana, Abdulaziz F.
    Espejo, Andrea P.
    Akgun, Yamac
    Millan, Nicolas C.
    Gomez-Fernandez, Carmen
    Cray, Carolyn
    ARCHIVES OF PATHOLOGY & LABORATORY MEDICINE, 2020, 144 (12) : 1465 - 1474
  • [3] Disease severity-specific neutrophil signatures in blood transcriptomes stratify COVID-19 patients
    Aschenbrenner, Anna C.
    Mouktaroudi, Maria
    Kraemer, Benjamin
    Oestreich, Marie
    Antonakos, Nikolaos
    Nuesch-Germano, Melanie
    Gkizeli, Konstantina
    Bonaguro, Lorenzo
    Reusch, Nico
    Bassler, Kevin
    Saridaki, Maria
    Knoll, Rainer
    Pecht, Tal
    Kapellos, Theodore S.
    Netea, Mihai G.
    Schultze, Joachim L.
    Kox, Matthijs
    Breteler, Monique M. B.
    Nattermann, Jacob
    Koutsoukou, Antonia
    Giamarellos-Bourboulis, Evangelos J.
    Ulas, Thomas
    EUROPEAN JOURNAL OF IMMUNOLOGY, 2021, 51 : 111 - 111
  • [4] Disease severity-specific neutrophil signatures in blood transcriptomes stratify COVID-19 patients
    Aschenbrenner, Anna C.
    Mouktaroudi, Maria
    Kraemer, Benjamin
    Oestreich, Marie
    Antonakos, Nikolaos
    Nuesch-Germano, Melanie
    Gkizeli, Konstantina
    Bonaguro, Lorenzo
    Reusch, Nico
    Basser, Kevin
    Saridaki, Maria
    Knoll, Rainer
    Pecht, Tal
    Kapellos, Theodore S.
    Doulou, Sarandia
    Kroeger, Charlotte
    Herbert, Miriam
    Holsten, Lisa
    Horne, Arik
    Gemuend, Ioanna D.
    Rovina, Nikoletta
    Agrawal, Shobhit
    Dahm, Kilian
    van Uelft, Martina
    Drews, Anna
    Lenkeit, Lena
    Bruse, Niklas
    Gerretsen, Jelle
    Gierlich, Jannik
    Becker, Matthias
    Haendler, Kristian
    Kraut, Michael
    Theis, Heidi
    Mengiste, Simachew
    De Domenico, Elena
    Schulte-Schrepping, Jonas
    Seep, Lea
    Raabe, Jan
    Hoffmeister, Christoph
    ToVinh, Michael
    Keitel, Verena
    Rieke, Gereon
    Talevi, Valentina
    Skowasch, Dirk
    Aziz, N. Ahmad
    Pickkers, Peter
    van de Veerdonk, Frank L.
    Netea, Mihai G.
    Schultze, Joachim L.
    Kox, Matthijs
    GENOME MEDICINE, 2021, 13 (01)
  • [5] Disease severity-specific neutrophil signatures in blood transcriptomes stratify COVID-19 patients
    Anna C. Aschenbrenner
    Maria Mouktaroudi
    Benjamin Krämer
    Marie Oestreich
    Nikolaos Antonakos
    Melanie Nuesch-Germano
    Konstantina Gkizeli
    Lorenzo Bonaguro
    Nico Reusch
    Kevin Baßler
    Maria Saridaki
    Rainer Knoll
    Tal Pecht
    Theodore S. Kapellos
    Sarandia Doulou
    Charlotte Kröger
    Miriam Herbert
    Lisa Holsten
    Arik Horne
    Ioanna D. Gemünd
    Nikoletta Rovina
    Shobhit Agrawal
    Kilian Dahm
    Martina van Uelft
    Anna Drews
    Lena Lenkeit
    Niklas Bruse
    Jelle Gerretsen
    Jannik Gierlich
    Matthias Becker
    Kristian Händler
    Michael Kraut
    Heidi Theis
    Simachew Mengiste
    Elena De Domenico
    Jonas Schulte-Schrepping
    Lea Seep
    Jan Raabe
    Christoph Hoffmeister
    Michael ToVinh
    Verena Keitel
    Gereon Rieke
    Valentina Talevi
    Dirk Skowasch
    N. Ahmad Aziz
    Peter Pickkers
    Frank L. van de Veerdonk
    Mihai G. Netea
    Joachim L. Schultze
    Matthijs Kox
    Genome Medicine, 13
  • [6] Homocysteine as a marker for predicting disease severity in patients with COVID-19
    Keskin, Adem
    Ustun, Goksenin U.
    Aci, Recai
    Duran, Utku
    BIOMARKERS IN MEDICINE, 2022, 16 (07) : 559 - 568
  • [7] Molecular signatures in the progression of COVID-19 severity
    Ronika De
    Rajeev K. Azad
    Scientific Reports, 12 (1)
  • [8] Molecular signatures in the progression of COVID-19 severity
    De, Ronika
    Azad, Rajeev K.
    SCIENTIFIC REPORTS, 2022, 12 (01):
  • [9] Gene Expression Risk Scores for COVID-19 Illness Severity
    Peterson, Derick R.
    Baran, Andrea M.
    Bhattacharya, Soumyaroop
    Branche, Angela R.
    Croft, Daniel P.
    Corbett, Anthony M.
    Walsh, Edward E.
    Falsey, Ann R.
    Mariani, Thomas J.
    JOURNAL OF INFECTIOUS DISEASES, 2023, 227 (03): : 322 - 331
  • [10] Gene Expression Risk Scores for COVID-19 Illness Severity
    Bhattacharya, S.
    Peterson, D.
    Baran, A.
    Branche, A.
    Croft, D.
    Corbett, A.
    Walsh, E.
    Falsey, A.
    Mariani, T. J.
    AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2022, 205