Strain engineering the electronic properties of the type-II CdO/MoS2 van der Waals heterostructure

被引:12
|
作者
Yan, Zheng-Hua [1 ]
Zhang, Yan [1 ]
Qiao, Hui [1 ]
Duan, Li [1 ]
Ni, Lei [1 ]
机构
[1] Changan Univ, Sch Mat Sci & Engn, Xian 710061, Shaanxi, Peoples R China
关键词
Van der Waals heterostructure; Structural stability; Electronic property; Band edge alignment; Strain engineering; First -principles calculation; WATER; PHOTOLUMINESCENCE; NANOSHEETS; STRATEGY;
D O I
10.1016/j.tsf.2022.139626
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The structural stability, electronic properties, band edge alignment and photocatalytic water splitting charac-teristics of the CdO/MoS2 heterostructure have been systematically investigated by first-principles calculations. The results show that the CdO/MoS2 heterostructure is a stable indirect bandgap (1.35 eV) semiconductor with a type-II band alignment and a large built-in electric field pointing from MoS2 to CdO, which greatly hinders the recombination of photogenerated carriers. Meanwhile, the CdO/MoS2 heterostructure with large carrier mobility can withstand the large biaxial strains. The band edge positions of the CdO/MoS2 heterostructure can be modulated by biaxial strain engineering. These results provide a theoretical basis for the application of the CdO/ MoS2 heterostructure in photovoltaic and other electronic devices.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Strain engineering of type-II C2N/WS2 van der Waals heterojunction for highly enhanced photocatalytic hydrogen evolution
    Li, Quan
    Pan, Cong
    Huang, Hao
    Wang, Ling-Ling
    Zhu, Xiaojun
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2023, 48 (67) : 26119 - 26132
  • [32] Optically induced trion formation and its control in a MoS2/graphene van der Waals heterostructure
    Ghosh Dastidar, Madhura
    Basu, Nilanjan
    Kao, I-Hsuan
    Katoch, Jyoti
    Nayak, Pramoda K.
    Singh, Simranjeet
    Bhallamudi, Vidya Praveen
    NANOSCALE, 2024, 16 (41) : 19413 - 19421
  • [33] MoS2 and Perylene Derivative Based Type-II Heterostructure: Bandgap Engineering and Giant Photoluminescence Enhancement
    Obaidulla, Sk Md
    Habib, Mohammad Rezwan
    Khan, Yahya
    Kong, Yuhan
    Liang, Tao
    Xu, Mingsheng
    ADVANCED MATERIALS INTERFACES, 2020, 7 (03)
  • [34] Modulating the Functions of MoS2/MoTe2 van der Waals Heterostructure via Thickness Variation
    Ngoc Thanh Duong
    Lee, Juchan
    Bang, Seungho
    Park, Chulho
    Lim, Seong Chu
    Jeong, Mun Seok
    ACS NANO, 2019, 13 (04) : 4478 - 4485
  • [35] Type-II Band Alignment and Tunable Optical Absorption in MoSSe/InS van der Waals Heterostructure
    Yuan, X. B.
    Guo, Y. H.
    Wang, J. L.
    Hu, G. C.
    Ren, J. F.
    Zhao, X. W.
    FRONTIERS IN CHEMISTRY, 2022, 10
  • [36] The type-II PtSe2/WS2 van der Waals heterostructure: A high efficiency water-splitting photocatalyst
    Qiao, Hui
    Zhang, Yan
    Yan, Zheng-Hua
    Duan, Li
    Fan, Ji-Bin
    Ni, Lei
    SURFACE SCIENCE, 2022, 723
  • [37] Optoelectronic Properties of MoS2/g-ZnO van der Waals Heterostructure Investigated by First-Principles Calculations
    Yao, Hui
    Yao, Qi
    Wang, Hao
    Wu, Yaping
    Zhou, Yinghui
    Wang, Huiqiong
    Chen, Xiaohang
    Zhan, Huahan
    Li, Shuping
    Kang, Junyong
    JOURNAL OF ELECTRONIC MATERIALS, 2020, 49 (08) : 4557 - 4562
  • [38] A type-II GaSe/HfS2 van der Waals heterostructure as promising photocatalyst with high carrier mobility
    Obeid, Mohammed M.
    Bafekry, Asadollah
    Rehman, Sajid Ur
    Nguyen, Chuong, V
    APPLIED SURFACE SCIENCE, 2020, 534
  • [39] Optoelectronic Properties of MoS2/g-ZnO van der Waals Heterostructure Investigated by First-Principles Calculations
    Hui Yao
    Qi Yao
    Hao Wang
    Yaping Wu
    Yinghui Zhou
    Huiqiong Wang
    Xiaohang Chen
    Huahan Zhan
    Shuping Li
    Junyong Kang
    Journal of Electronic Materials, 2020, 49 : 4557 - 4562
  • [40] Strain tuned InSe/MoS2 bilayer van der Waals heterostructures for photovoltaics or photocatalysis
    Zhang, J.
    Lang, X. Y.
    Zhu, Y. F.
    Jiang, Q.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2018, 20 (26) : 17574 - 17582