An overview of biomedical entity linking throughout the years

被引:18
|
作者
French, Evan [1 ]
McInnes, Bridget T. [1 ]
机构
[1] Virginia Commonwealth Univ, Dept Comp Sci, Richmond, VA 23284 USA
基金
美国国家科学基金会;
关键词
Natural language processing; Entity linking; Normalization; NORMALIZATION; RECOGNITION; CORPUS; TEXT; REPRESENTATIONS; ALGORITHMS;
D O I
10.1016/j.jbi.2022.104252
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Biomedical Entity Linking (BEL) is the task of mapping of spans of text within biomedical documents to normalized, unique identifiers within an ontology. This is an important task in natural language processing for both translational information extraction applications and providing context for downstream tasks like relationship extraction. In this paper, we will survey the progression of BEL from its inception in the late 80s to present day state of the art systems, provide a comprehensive list of datasets available for training BEL systems, reference shared tasks focused on BEL, discuss the technical components that comprise BEL systems, and discuss possible directions for the future of the field.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Entity linking for biomedical literature
    Jin G Zheng
    Daniel Howsmon
    Boliang Zhang
    Juergen Hahn
    Deborah McGuinness
    James Hendler
    Heng Ji
    BMC Medical Informatics and Decision Making, 15
  • [2] Entity linking for biomedical literature
    Zheng, Jin G.
    Howsmon, Daniel
    Zhang, Boliang
    Hahn, Juergen
    McGuinness, Deborah
    Hendler, James
    Ji, Heng
    BMC MEDICAL INFORMATICS AND DECISION MAKING, 2015, 15
  • [3] BELB: a biomedical entity linking benchmark
    Garda, Samuele
    Weber-Genzel, Leon
    Martin, Robert
    Leser, Ulf
    BIOINFORMATICS, 2023, 39 (11)
  • [4] Improving Biomedical Entity Linking with Cross-Entity Interaction
    Xu, Zhenran
    Chen, Yulin
    Hu, Baotian
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 11, 2023, : 13869 - 13877
  • [5] A Lightweight Neural Model for Biomedical Entity Linking
    Chen, Lihu
    Varoquaux, Gael
    Suchanek, Fabian M.
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 12657 - 12665
  • [6] A Joint Learning Method for Biomedical Entity Linking
    Hu Y.
    Shen D.-R.
    Nie T.-Z.
    Kou Y.
    Jisuanji Xuebao/Chinese Journal of Computers, 2022, 45 (04): : 748 - 765
  • [7] A Comprehensive Evaluation of Biomedical Entity Linking Models
    Kartchner, David
    Deng, Jennifer
    Lohiya, Shubham
    Kopparthi, Tejasri
    Bathala, Prasanth
    Domingo-Fernandez, Daniel
    Mitchell, Cassie S.
    2023 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP 2023), 2023, : 14462 - 14478
  • [8] Clustering-based Inference for Biomedical Entity Linking
    Angell, Rico
    Monath, Nicholas
    Mohan, Sunil
    Yadav, Nishant
    McCallum, Andrew
    2021 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL-HLT 2021), 2021, : 2598 - 2608
  • [9] Biomedical entity linking based on less labeled data
    Yu HU
    Derong SHEN
    Tiezheng NIE
    Yue KOU
    Ge YU
    Frontiers of Computer Science, 2022, 16 (03) : 214 - 216
  • [10] Sieve-Based Entity Linking for the Biomedical Domain
    D'Souza, Jennifer
    Ng, Vincent
    PROCEEDINGS OF THE 53RD ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL) AND THE 7TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (IJCNLP), VOL 2, 2015, : 297 - 302