Automatic glaucoma detection from fundus images using transfer learning

被引:7
|
作者
Patil, Rajeshwar [1 ]
Sharma, Sanjeev [1 ]
机构
[1] Indian Inst Informat Technol, Pune, India
关键词
Glaucoma classification; Computer vision; Transfer learning; Deep learning; NEURAL-NETWORK; DIAGNOSIS;
D O I
10.1007/s11042-024-18242-8
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Glaucoma is an eye disease that damages the optic nerve (or retina) and impairs vision. This disease can be prevented with regular checkups, but this increases the workload for professionals and the time it takes to get results. So an automated method using deep learning would be helpful for detection of disease. In order to shorten the diagnosis time for glaucoma, this paper proposed a deep learning based method for automatic glaucoma detection. The experiments are conducted on glaucoma datasets available on Kaggle. This paper used transfer learning based pretrained models namely DenseNet169, MobileNet, InceptionV3, Xception, ReseNet152V2,and VGG19. Among all models DenseNet169 gives best result with accuracy 0.993590 and precision and recall of 0.993671 and 0.9935895 respectively. A comparison of the best model results with existing work shows that the proposed model provides better results.
引用
收藏
页码:78207 / 78226
页数:20
相关论文
共 50 条
  • [21] Automatic glaucoma detection based on transfer induced attention network
    Xu, Xi
    Guan, Yu
    Li, Jianqiang
    Ma, Zerui
    Zhang, Li
    Li, Li
    BIOMEDICAL ENGINEERING ONLINE, 2021, 20 (01) : 39
  • [22] ECNet: An evolutionary convolutional network for automated glaucoma detection using fundus images
    Nayak, Deepak Ranjan
    Das, Dibyasundar
    Majhi, Banshidhar
    Bhandary, Sulatha, V
    Acharya, U. Rajendra
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2021, 67
  • [23] CataractNet: An Automated Cataract Detection System Using Deep Learning for Fundus Images
    Junayed, Masum Shah
    Islam, Md Baharul
    Sadeghzadeh, Arezoo
    Rahman, Saimunur
    IEEE ACCESS, 2021, 9 (09): : 128799 - 128808
  • [24] Real-Time Glaucoma Detection From Digital Fundus Images Using Self-ONNs
    Devecioglu, Ozer Can
    Malik, Junaid
    Ince, Turker
    Kiranyaz, Serkan
    Atalay, Eray
    Gabbouj, Moncef
    IEEE ACCESS, 2021, 9 : 140031 - 140041
  • [25] A Comparative Study of Deep Learning Models for Diagnosing Glaucoma From Fundus Images
    Alghamdi, Manal
    Abdel-Mottaleb, Mohamed
    IEEE ACCESS, 2021, 9 : 23894 - 23906
  • [26] Glaucoma risk index: Automated glaucoma detection from color fundus images
    Bock, Ruediger
    Meier, Joerg
    Nyul, Laszlo G.
    Hornegger, Joachim
    Michelson, Georg
    MEDICAL IMAGE ANALYSIS, 2010, 14 (03) : 471 - 481
  • [27] Early Detection of Diabetic Eye Disease from Fundus Images with Deep Learning
    Sarki, Rubina
    Ahmed, Khandakar
    Wang, Hua
    Michalska, Sandra
    Zhang, Yanchun
    DATABASES THEORY AND APPLICATIONS, ADC 2020, 2020, 12008 : 234 - 241
  • [28] Automatic Detection of Microaneurysms in Fundus Images
    Astorga, Jesus Eduardo Ochoa
    Wang, Linni
    Yamada, Shuhei
    Fujiwara, Yusuke
    Du, Weiwei
    Peng, Yahui
    INTERNATIONAL JOURNAL OF SOFTWARE INNOVATION, 2023, 11 (01) : 26 - 26
  • [29] Novel Features for Glaucoma Detection in Fundus Images
    Gonzalez Urquijo, Juan A.
    Sachez Fonseca, Jessica D.
    Lopez Lopez, Juan M.
    Cancino Suarez, Sandra
    PATTERN RECOGNITION (MCPR 2021), 2021, 12725 : 369 - 378
  • [30] An Approach Towards Automatic Detection of Toxoplasmosis using Fundus Images
    Chakravarthy, Adithi D.
    Abeyrathna, Dilanga
    Subramaniam, Mahadevan
    Chundi, Parvathi
    Halim, Muhammad Sohail
    Hasanreisoglu, Murat
    Sepah, Yasir J.
    Quan Dong Nguyen
    2019 IEEE 19TH INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOENGINEERING (BIBE), 2019, : 710 - 717