Frequency estimation;
Complex single -tone;
Subspace method;
Short observation interval;
PARAMETER-ESTIMATION;
EFFICIENT;
ALGORITHM;
D O I:
10.1016/j.dsp.2023.104304
中图分类号:
TM [电工技术];
TN [电子技术、通信技术];
学科分类号:
0808 ;
0809 ;
摘要:
We propose a single-tone frequency estimator of a one-dimensional complex signal in complex white Gaussian noise. The estimator is based on the subspace approach and the unitary transformation. Due to its low space and time-complexity, we name the estimator as Low complexity Unitary Principal-singular-vector Utilization for Model Analysis (LUPUMA). Regardless of the observation length, LUPUMA provides a uniform estimation variance over the whole frequency range, while achieving the lowest time-complexity among subspace methods. The proposed estimator asymptotically reaches the Crame ' r-Rao Lower Bound. For short observations, the signalto-noise ratio threshold of LUPUMA corresponds to the threshold of the maximum likelihood estimator. The low space and time-complexity along with the stable and state-of-the-art estimation performance for short observations make LUPUMA an ideal candidate for applications with a limited number of signal samples, limited computational power, limited memory, and for applications that require rapid processing time (low latency).