Highly selective Mg2+/Li+ separation membranes prepared by surface grafting of a novel quaternary ammonium bromide

被引:8
作者
Zhao, Guoke [1 ]
Sun, Jie [1 ]
Tang, Gongqing [1 ]
Pan, Guoyuan [1 ]
Yu, Hao [1 ]
Li, Yu [1 ]
Zhang, Yang [1 ]
Liu, Yiqun [1 ]
机构
[1] SINOPEC Beijing Res Inst Chem Ind, Beijing 100013, Peoples R China
关键词
Nanofiltration membranes; Lithium extraction; Mg2+/Li+ separation; Quaternary ammonium; Surface modification; SALT-LAKE BRINES; NANOFILTRATION MEMBRANE; LITHIUM; MAGNESIUM; RECOVERY;
D O I
10.1016/j.seppur.2023.126184
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
The efficient separation of Mg2+ and Li+ is the crucial step in the process of extracting lithium from salt lake brine. Nanofiltration (NF) membranes exhibit promising application potential in Mg2+/Li+ separation but the Mg2+/Li+ selectively of negatively charged NF membranes prepared by conventional interfacial polymerization process is far from desirable. In this study, a novel positively charged quaternary ammonium bromide, 3-bromopropyl trimethylammonium bromide (BTAB), is grafted on the polyethyleneimine (PEI)/trimesoyl chloride (TMC) NF membrane surface. This is achieved by a chemical reaction known as nucleophilic substitution, which involves the replacement of a bromine atom (-Br) with an amine group. Owing to the enhanced Donnan effects, the BTAB-modified NF membranes exhibit a MgCl2 rejection of up to 99.2 %, while maintaining a water flux of approximately 50 LMH under 5 bar. Meanwhile, the LiCl rejection is only similar to 30 %. The Mg2+/Li+ selectively of the BTAB-modified NF membranes reaches 95.9 when filtrating a simulated brine with a Mg2+/Li+ ratio of 20 (2000 ppm MgCl2 and LiCl mixture), which is a twofold improvement compared with the pristine NF membranes. The working stability of the BTAB-modified NF membranes is confirmed by a 50-h continuous operation process. A two-stage NF treatment is conducted using a simulated East Taijinar salt lake brine, achieving Li2CO3 powder with a purity level of 99.4 %. The nucleophilic substitution reaction between -Br and the amine groups offers a good reference for the surface functionalization of NF membranes.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Positively charged nanofiltration membranes for efficient Mg2+/Li+ separation from high Mg2+/Li+ ratio brine
    Zhao, Guoke
    Zhang, Yang
    Li, Yu
    Pan, Guoyuan
    Liu, Yiqun
    ADVANCED MEMBRANES, 2023, 3
  • [2] High performance Mg2+/Li+ separation membranes modified by a bis-quaternary ammonium salt
    Xu, Yang
    Peng, Huawen
    Luo, Hao
    Zhang, Qi
    Liu, Zhitian
    Zhao, Qiang
    DESALINATION, 2022, 526
  • [3] Grafting modification of thin-film composite membrane with quaternary ammonium polyelectrolyte for Mg2+/Li+ separation
    Ren, Xiaomin
    Chen, Yingying
    Wang, Yu
    Fu, Hongyan
    Hu, Dan
    Feng, Xudong
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2024, 12 (02):
  • [4] Effect of quaternary ammonium salt structures on Mg2+/Li+ separation performance of modified membranes
    Wang, Jiyue
    Xu, Yang
    Zhang, Qi
    Zhao, Qiang
    Liu, Zhitian
    DESALINATION, 2025, 601
  • [5] Dual-skin layer nanofiltration membranes for highly selective Li+/Mg2+ separation
    Yang, Zhao
    Fang, Wangxi
    Wang, Zhenyi
    Zhang, Ruolin
    Zhu, Yuzhang
    Jin, Jian
    JOURNAL OF MEMBRANE SCIENCE, 2021, 620
  • [6] Sulfonium-polyamide membranes for high flux Mg2+/Li+ separation
    Peng, Huawen
    Hu, Yongjin
    Li, Shaoping
    Rao, Jingyi
    Zhao, Qiang
    JOURNAL OF MEMBRANE SCIENCE, 2023, 674
  • [7] Fabrication of high performance Mg2+/Li- nanofiltration membranes by surface grafting of quaternized bipyridine
    Feng, Yuxi
    Peng, Huawen
    Zhao, Qiang
    SEPARATION AND PURIFICATION TECHNOLOGY, 2022, 280
  • [8] Length Thin film composite membranes prepared from diaminoguanidine hydrochloride for Mg2+/Li+ separation
    Zhang, Saihui
    Luo, Chunhui
    Li, Xiaoyang
    Zhang, Weiwei
    Jing, Kun
    Lin, Ligang
    Qiao, Zhihua
    Xu, Jing
    Yan, Feng
    Wan, Dong
    Pan, Jie
    APPLIED SURFACE SCIENCE, 2023, 635
  • [9] An interlayer-based positive charge compensation strategy for the preparation of highly selective Mg2+/Li+ separation nanofiltration membranes
    Chen, Kuo
    Li, Feiyang
    Wei, Tao
    Zhou, Hengyu
    Zhang, Tengfang
    Zhao, Shengchao
    Xie, Tengteng
    Sun, Haixiang
    Li, Peng
    Niu, Jason
    JOURNAL OF MEMBRANE SCIENCE, 2023, 684
  • [10] High flux Mg2+/Li+ nanofiltration membranes prepared by surface modification of polyethylenimine thin film composite membranes
    Luo, Hao
    Peng, Huawen
    Zhao, Qiang
    APPLIED SURFACE SCIENCE, 2022, 579