Exploring QCD matter in extreme conditions with Machine Learning

被引:32
作者
Zhou, Kai [1 ,2 ]
Wang, Lingxiao [1 ]
Pang, Long -Gang [3 ,4 ]
Shi, Shuzhe [5 ,6 ]
机构
[1] Frankfurt Inst Adv Studies FIAS, D-60438 Frankfurt, Germany
[2] Chinese Univ Hong Kong, Sch Sci & Engn, Shenzhen 518172, Peoples R China
[3] Cent China Normal Univ, Inst Particle Phys, Key Lab Quark & Lepton Phys, MOE, Wuhan 430079, Peoples R China
[4] Cent China Normal Univ, Key Lab Quark & Lepton Phys MOE, Wuhan 430079, Peoples R China
[5] Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China
[6] SUNY Stony Brook, Dept Phys & Astron, Ctr Nucl Theory, Stony Brook, NY 11794 USA
基金
中国国家自然科学基金;
关键词
Machine learning; Heavy ion collisions; Lattice QCD; Neutron star; Inverse problem; EQUATION-OF-STATE; HEAVY-ION COLLISIONS; QUARK-GLUON-PLASMA; IMPACT PARAMETER DETERMINATION; MULTIPLE PARTON SCATTERING; NUCLEAR SYMMETRY ENERGY; MASS-RADIUS RELATION; BAYESIAN-INFERENCE; NEURAL-NETWORKS; PHASE-DIAGRAM;
D O I
10.1016/j.ppnp.2023.104084
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
In recent years, machine learning has emerged as a powerful computational tool and novel problem -solving perspective for physics, offering new avenues for studying strongly interacting QCD matter properties under extreme conditions. This review article aims to provide an overview of the current state of this intersection of fields, focusing on the application of machine learning to theoretical studies in high energy nuclear physics. It covers diverse aspects, including heavy ion collisions, lattice field theory, and neutron stars, and discuss how machine learning can be used to explore and facilitate the physics goals of understanding QCD matter. The review also provides a commonality overview from a methodology perspective, from data -driven perspective to physics -driven perspective. We conclude by discussing the challenges and future prospects of machine learning applications in high energy nuclear physics, also underscoring the importance of incorporating physics priors into the purely data -driven learning toolbox. This review highlights the critical role of machine learning as a valuable computational paradigm for advancing physics exploration in high energy nuclear physics.
引用
收藏
页数:83
相关论文
共 693 条
  • [31] Quark-gluon plasma and color glass condensate at RHIC?: The perspective from the BRAHMS experiment
    Arsene, I
    Bearden, IG
    Beavis, D
    Besliu, C
    Budick, B
    Boggild, H
    Chasman, C
    Christensen, CH
    Christiansen, P
    Cibor, J
    Debbe, R
    Enger, E
    Gaardhoje, JJ
    Germinario, M
    Hansen, O
    Holm, A
    Holme, AK
    Hagel, K
    Ito, H
    Jakobsen, E
    Jipa, A
    Jundt, F
    Jordre, JI
    Jorgensen, CE
    Karabowicz, R
    Kim, EJ
    Kozik, T
    Larsen, TM
    Lee, JH
    Lee, YK
    Lindahl, S
    Lovhoiden, G
    Majka, Z
    Makeev, A
    Mikelsen, M
    Murray, MJ
    Natowitz, J
    Neumann, B
    Nielsen, BS
    Ouerdane, D
    Planeta, R
    Rami, F
    Ristea, C
    Ristea, O
    Röhrich, D
    Samset, BH
    Sandberg, D
    Sanders, SJ
    Scheetz, RA
    Staszel, P
    [J]. NUCLEAR PHYSICS A, 2005, 757 (1-2) : 1 - 27
  • [32] Maximum entropy analysis of the spectral functions in lattice QCD
    Asakawa, M
    Nakahara, Y
    Hatsuda, T
    [J]. PROGRESS IN PARTICLE AND NUCLEAR PHYSICS, VOL 46, NO 2, 2001, 46 (02): : 459 - 508
  • [33] Mapping distinct phase transitions to a neural network
    Bachtis, Dimitrios
    Aarts, Gert
    Lucini, Biagio
    [J]. PHYSICAL REVIEW E, 2020, 102 (05)
  • [34] Extending machine learning classification capabilities with histogram reweighting
    Bachtis, Dimitrios
    Aarts, Gert
    Lucini, Biagio
    [J]. PHYSICAL REVIEW E, 2020, 102 (03)
  • [35] The PHOBOS perspective on discoveries at RHIC
    Back, BB
    Baker, MD
    Ballintijn, M
    Barton, DS
    Becker, B
    Betts, RR
    Bickley, AA
    Bindel, R
    Budzanowski, A
    Busza, W
    Carroll, A
    Chai, Z
    Decowski, MP
    García, E
    Gburek, T
    George, NK
    Gulbrandsen, K
    Gushue, S
    Halliwell, C
    Hamblen, J
    Harrington, AS
    Hauer, A
    Heintzelman, GA
    Henderson, C
    Hofman, DJ
    Hollis, RS
    Holynski, C
    Holzman, B
    Iordanova, A
    Johnson, E
    Kane, JL
    Katzy, J
    Khan, N
    Kucewicz, W
    Kulinich, P
    Kuo, CM
    Lee, JW
    Lin, WT
    Manly, S
    McLeod, D
    Mignerey, AC
    Nouicer, R
    Olszewski, A
    Pak, R
    Park, IC
    Pernegger, H
    Reed, C
    Remsberg, LP
    Reuter, A
    Roland, C
    [J]. NUCLEAR PHYSICS A, 2005, 757 (1-2) : 28 - 101
  • [36] Statistical Mechanics of Deep Learning
    Bahri, Yasaman
    Kadmon, Jonathan
    Pennington, Jeffrey
    Schoenholz, Sam S.
    Sohl-Dickstein, Jascha
    Ganguli, Surya
    [J]. ANNUAL REVIEW OF CONDENSED MATTER PHYSICS, VOL 11, 2020, 2020, 11 : 501 - 528
  • [37] A general Neural Particle Method for hydrodynamics modeling
    Bai, Jinshuai
    Zhou, Ying
    Ma, Yuwei
    Jeong, Hyogu
    Zhan, Haifei
    Rathnayaka, Charith
    Sauret, Emilie
    Gu, Yuantong
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2022, 393
  • [38] INDUCED GLUON RADIATION IN A QCD MEDIUM
    BAIER, R
    DOKSHITZER, YL
    PEIGNE, S
    SCHIFF, D
    [J]. PHYSICS LETTERS B, 1995, 345 (03) : 277 - 286
  • [39] Radiative energy loss of high energy quarks and gluons in a finite-volume quark-gluon plasma
    Baier, R
    Dokshitzer, YL
    Mueller, AH
    Peigne, S
    Schiff, D
    [J]. NUCLEAR PHYSICS B, 1997, 483 (1-2) : 291 - 320
  • [40] Radiative energy loss and p perpendicular to-broadening of high energy partons in nuclei
    Baier, R
    Dokshitzer, YL
    Mueller, AH
    Peigne, S
    Schiff, D
    [J]. NUCLEAR PHYSICS B, 1997, 484 (1-2) : 265 - 282