Exploring QCD matter in extreme conditions with Machine Learning

被引:32
作者
Zhou, Kai [1 ,2 ]
Wang, Lingxiao [1 ]
Pang, Long -Gang [3 ,4 ]
Shi, Shuzhe [5 ,6 ]
机构
[1] Frankfurt Inst Adv Studies FIAS, D-60438 Frankfurt, Germany
[2] Chinese Univ Hong Kong, Sch Sci & Engn, Shenzhen 518172, Peoples R China
[3] Cent China Normal Univ, Inst Particle Phys, Key Lab Quark & Lepton Phys, MOE, Wuhan 430079, Peoples R China
[4] Cent China Normal Univ, Key Lab Quark & Lepton Phys MOE, Wuhan 430079, Peoples R China
[5] Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China
[6] SUNY Stony Brook, Dept Phys & Astron, Ctr Nucl Theory, Stony Brook, NY 11794 USA
基金
中国国家自然科学基金;
关键词
Machine learning; Heavy ion collisions; Lattice QCD; Neutron star; Inverse problem; EQUATION-OF-STATE; HEAVY-ION COLLISIONS; QUARK-GLUON-PLASMA; IMPACT PARAMETER DETERMINATION; MULTIPLE PARTON SCATTERING; NUCLEAR SYMMETRY ENERGY; MASS-RADIUS RELATION; BAYESIAN-INFERENCE; NEURAL-NETWORKS; PHASE-DIAGRAM;
D O I
10.1016/j.ppnp.2023.104084
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
In recent years, machine learning has emerged as a powerful computational tool and novel problem -solving perspective for physics, offering new avenues for studying strongly interacting QCD matter properties under extreme conditions. This review article aims to provide an overview of the current state of this intersection of fields, focusing on the application of machine learning to theoretical studies in high energy nuclear physics. It covers diverse aspects, including heavy ion collisions, lattice field theory, and neutron stars, and discuss how machine learning can be used to explore and facilitate the physics goals of understanding QCD matter. The review also provides a commonality overview from a methodology perspective, from data -driven perspective to physics -driven perspective. We conclude by discussing the challenges and future prospects of machine learning applications in high energy nuclear physics, also underscoring the importance of incorporating physics priors into the purely data -driven learning toolbox. This review highlights the critical role of machine learning as a valuable computational paradigm for advancing physics exploration in high energy nuclear physics.
引用
收藏
页数:83
相关论文
共 693 条
  • [1] Phase transition in particle physics Results and perspective from lattice Quantum Chromodynamics
    Aarts, Gert
    Aichelin, Joerg
    Allton, Chris
    Athenodorou, Andreas
    Bachtis, Dimitrios
    Bonanno, Claudio
    Brambilla, Nora
    Bratkovskaya, Elena
    Bruno, Mattia
    Caselle, Michele
    Conti, Costanza
    Contino, Roberto
    Cosmai, Leonardo
    Cuteri, Francesca
    Del Debbio, Luigi
    D'Elia, Massimo
    Dimopoulos, Petros
    Di Renzo, Francesco
    Galatyuk, Tetyana
    Guenther, Jana N.
    Houtz, Rachel
    Karsch, Frithjof
    Kotov, Andrey Yu.
    Lombardo, Maria Paola
    Lucini, Biagio
    Maio, Lorenzo
    Panero, Marco
    Pawlowski, Jan M.
    Pelissetto, Andrea
    Philipsen, Owe
    Rago, Antonio
    Ratti, Claudia
    Ryan, Sinead M.
    Sannino, Francesco
    Sasaki, Chihiro
    Schicho, Philipp
    Schmidt, Christian
    Sharma, Sipaz
    Soloveva, Olga
    Sorba, Marianna
    Wiese, Uwe-Jens
    [J]. PROGRESS IN PARTICLE AND NUCLEAR PHYSICS, 2023, 133
  • [2] Introductory lectures on lattice QCD at nonzero baryon number
    Aarts, Gert
    [J]. XIII INTERNATIONAL WORKSHOP ON HADRON PHYSICS, SECTIONS 1-5, 2016, 706
  • [3] Abadi M, 2016, PROCEEDINGS OF OSDI'16: 12TH USENIX SYMPOSIUM ON OPERATING SYSTEMS DESIGN AND IMPLEMENTATION, P265
  • [4] Abbott R., 2022, arXiv
  • [5] Abbott R., 2023, POS LATTICE2022, P036, DOI 10.22323/1.430.0036
  • [6] Gauge-equivariant flow models for sampling in lattice field theories with pseudofermions
    Abbott, Ryan
    Albergo, Michael S.
    Boyda, Denis
    Cranmer, Kyle
    Hackett, Daniel C.
    Kanwar, Gurtej
    Racaniere, Sebastien
    Rezende, Danilo J.
    Romero-Lopez, Fernando
    Shanahan, Phiala E.
    Tian, Betsy
    Urban, Julian M.
    [J]. PHYSICAL REVIEW D, 2022, 106 (07)
  • [7] ACKLEY DH, 1985, COGNITIVE SCI, V9, P147
  • [8] Global polarization of Λ hyperons in Au plus Au collisions at √sNN=200 GeV
    Adam, J.
    Adamczyk, L.
    Adams, J. R.
    Adkins, J. K.
    Agakishiev, G.
    Aggarwal, M. M.
    Ahammed, Z.
    Ajitanand, N. N.
    Alekseev, I
    Anderson, D. M.
    Aoyama, R.
    Aparin, A.
    Arkhipkin, D.
    Aschenauer, E. C.
    Ashraf, M. U.
    Atetalla, F.
    Attri, A.
    Averichev, G. S.
    Bai, X.
    Bairathi, V
    Barish, K.
    Bassin, A. J.
    Behera, A.
    Bellwied, R.
    Bhasin, A.
    Bhati, A. K.
    Bielcik, J.
    Bielcikova, J.
    Bland, L. C.
    Bordyuzhin, I. G.
    Brandenburg, J. D.
    Brandin, A., V
    Brown, D.
    Bryslawskyj, J.
    Bunzarovi, I
    Butterworth, J.
    Caines, H.
    Sanchez, M. Calderon de la Barca
    Campbell, J. M.
    Cebra, D.
    Chakaberia, I
    Chaloupka, P.
    Chang, F-H
    Chang, Z.
    Chankova-Bunzarova, N.
    Chatterjee, A.
    Chattopadhyay, S.
    Chen, J. H.
    Chen, X.
    Cheng, J.
    [J]. PHYSICAL REVIEW C, 2018, 98 (01)
  • [9] Global Λ hyperon polarization in nuclear collisions
    Adamczyk, L.
    Adkins, J. K.
    Agakishiev, G.
    Aggarwal, M. M.
    Ahammed, Z.
    Ajitanand, N. N.
    Alekseev, I.
    Anderson, D. M.
    Aoyama, R.
    Aparin, A.
    Arkhipkin, D.
    Aschenauer, E. C.
    Ashraf, M. U.
    Attri, A.
    Averichev, G. S.
    Bai, X.
    Bairathi, V.
    Behera, A.
    Bellwied, R.
    Bhasin, A.
    Bhati, A. K.
    Bhattarai, P.
    Bielcik, J.
    Bielcikova, J.
    Bland, L. C.
    Bordyuzhin, I. G.
    Bouchet, J.
    Brandenburg, J. D.
    Brandin, A. V.
    Brown, D.
    Bunzarov, I.
    Butterworth, J.
    Caines, H.
    Sanchez, M. Calderon De la Barca
    Campbell, J. M.
    Cebra, D.
    Chakaberia, I.
    Chaloupka, P.
    Chang, Z.
    Chankova-Bunzarova, N.
    Chatterjee, A.
    Chattopadhyay, S.
    Chen, X.
    Chen, J. H.
    Chen, X.
    Cheng, J.
    Cherney, M.
    Christie, W.
    Contin, G.
    Crawford, H. J.
    [J]. NATURE, 2017, 548 (7665) : 62 - +
  • [10] Formation of dense partonic matter in relativistic nucleus-nucleus collisions at RHIC:: Experimental evaluation by the PHENIX Collaboration
    Adcox, K
    Adler, SS
    Afanasiev, S
    Aidala, C
    Ajitanand, NN
    Akiba, Y
    Al-Jamel, A
    Alexander, J
    Amirikas, R
    Aoki, K
    Aphecetche, L
    Arai, Y
    Armendariz, R
    Aronson, SH
    Averbeck, R
    Awes, TC
    Azmoun, R
    Babintsev, V
    Baldisseri, A
    Barish, KN
    Barnes, PD
    Barrette, J
    Bassalleck, B
    Bathe, S
    Batsouli, S
    Baublis, V
    Bauer, F
    Bazilevsky, A
    Belikov, S
    Bellaiche, FG
    Belyaev, ST
    Bennett, MJ
    Berdnikov, Y
    Bhagavatula, S
    Bjorndal, MT
    Boissevain, JG
    Borel, H
    Borenstein, S
    Botelho, S
    Brooks, ML
    Brown, DS
    Bruner, N
    Bucher, D
    Buesching, H
    Bumazhnov, V
    Bunce, G
    Burward-Hoy, JM
    Butsyk, S
    Camard, X
    Carey, TA
    [J]. NUCLEAR PHYSICS A, 2005, 757 (1-2) : 184 - 283