Physiological and metabolic insights into the first cultured anaerobic representative of deep-sea Planctomycetes bacteria

被引:5
作者
Zheng, Rikuan [1 ,2 ,3 ,4 ,5 ]
Wang, Chong [1 ,2 ,3 ,4 ,5 ]
Liu, Rui [1 ,2 ,3 ,4 ,5 ]
Cai, Ruining [1 ,2 ,3 ,4 ,5 ,6 ]
Sun, Chaomin [1 ,2 ,3 ,4 ,5 ,6 ]
机构
[1] Chinese Acad Sci, Qingdao, Peoples R China
[2] Chinese Acad Sci, Shandong Prov Key Lab Expt Marine Biol, Qingdao, Peoples R China
[3] Chinese Acad Sci, Ctr Deep Sea Res, Inst Oceanol, Qingdao, Peoples R China
[4] Qingdao Natl Lab Marine Sci & Technol, Lab Marine Biol & Biotechnol, Qingdao, Peoples R China
[5] Chinese Acad Sci, Ctr Ocean Mega Sci, Qingdao, Peoples R China
[6] Univ Chinese Acad Sci, Coll Earth Sci, Beijing, Peoples R China
来源
ELIFE | 2024年 / 12卷
基金
中国国家自然科学基金;
关键词
Planctomycetes; deep sea; cultivation; nitrogen metabolism; bacteriophages; Other; GEN; NOV; FAM; CLASS PHYCISPHAERAE; SP; PROTEIN; DIVERSITY; PROPOSAL; LIFE; TOOL; ECOLOGY;
D O I
10.7554/eLife.89874
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Planctomycetes bacteria are ubiquitously distributed across various biospheres and play key roles in global element cycles. However, few deep-sea Planctomycetes members have been cultivated, limiting our understanding of Planctomycetes in the deep biosphere. Here, we have successfully cultured a novel strain of Planctomycetes (strain ZRK32) from a deep-sea cold seep sediment. Our genomic, physiological, and phylogenetic analyses indicate that strain ZRK32 is a novel species, which we propose be named: Poriferisphaera heterotrophicis. We show that strain ZRK32 replicates using a budding mode of division. Based on the combined results from growth assays and transcriptomic analyses, we found that rich nutrients, or supplementation with NO(3)(- )or NH4+ promoted the growth of strain ZRK32 by facilitating energy production through the tricarboxylic acid cycle and the Embden-Meyerhof-Parnas glycolysis pathway. Moreover, supplementation with NO(3)(- )or NH4+ induced strain ZRK32 to release a bacteriophage in a chronic manner, without host cell lysis. This bacteriophage then enabled strain ZRK32, and another marine bacterium that we studied, to metabolize nitrogen through the function of auxiliary metabolic genes. Overall, these findings expand our understanding of deep-sea Planctomycetes bacteria, while highlighting their ability to metabolize nitrogen when reprogrammed by chronic viruses.
引用
收藏
页数:23
相关论文
共 50 条
  • [21] The First Deep-Sea Stylasterid (Hydrozoa, Stylasteridae) of the Red Sea
    Maggioni, Davide
    Terraneo, Tullia I.
    Chimienti, Giovanni
    Marchese, Fabio
    Pica, Daniela
    Cairns, Stephen D.
    Eweida, Ameer A.
    Rodrigue, Mattie
    Purkis, Sam J.
    Benzoni, Francesca
    DIVERSITY-BASEL, 2022, 14 (04):
  • [22] The diversity of PAH-degrading bacteria in a deep-sea water column above the Southwest Indian Ridge
    Yuan, Jun
    Lai, Qiliang
    Sun, Fengqin
    Zheng, Tianling
    Shao, Zongze
    FRONTIERS IN MICROBIOLOGY, 2015, 6
  • [23] First observations of jelly-falls at the seafloor in a deep-sea fjord
    Sweetman, Andrew K.
    Chapman, Annelise
    DEEP-SEA RESEARCH PART I-OCEANOGRAPHIC RESEARCH PAPERS, 2011, 58 (12) : 1206 - 1211
  • [24] Unexpectedly high diversity of anammox bacteria detected in deep-sea surface sediments of the South China Sea
    Wu, Jiapeng
    Hong, Yiguo
    Chang, Xiangyang
    Jiao, Lijing
    Li, Yiben
    Liu, Xiaohan
    Xie, Haitao
    Gu, Ji-Dong
    FEMS MICROBIOLOGY ECOLOGY, 2019, 95 (03)
  • [25] Isolation and physiological characterization of two novel, piezophilic, thermophilic chemolithoautotrophs from a deep-sea hydrothermal vent chimney
    Takai, Ken
    Miyazaki, Masayuki
    Hirayama, Hisako
    Nakagawa, Satoshi
    Querellou, Joel
    Godfroy, Anne
    ENVIRONMENTAL MICROBIOLOGY, 2009, 11 (08) : 1983 - 1997
  • [26] Deep-sea in situ and laboratory multi-omics provide insights into the sulfur assimilation of a deep-sea Chloroflexota bacterium
    Zheng, Rikuan
    Wang, Chong
    Sun, Chaomin
    MBIO, 2024, 15 (04):
  • [27] Marinitoga lauensis sp. nov., a novel deep-sea hydrothermal vent thermophilic anaerobic heterotroph with a prophage
    L'Haridon, Stephane
    Gouhier, Lena
    St John, Emily
    Reysenbach, Anna-Louise
    SYSTEMATIC AND APPLIED MICROBIOLOGY, 2019, 42 (03) : 343 - 347
  • [28] Evolutionary ecology of denitrifying methanotrophic NC10 bacteria in the deep-sea biosphere
    Li, Yingdong
    Wang, Ting
    Jing, Hongmei
    Xiao, Yao
    MOLECULAR ECOLOGY, 2024, 33 (12)
  • [29] Diversity of cultivable bacteria from deep-sea sediments of the Colombian Caribbean and their potential in bioremediation
    Marcela Blandon, Lina
    Marin, Mario Alejandro
    Quintero, Marynes
    Marcela Jutinico-Shubach, Laura
    Montoya-Giraldo, Manuela
    Santos-Acevedo, Marisol
    Gomez-Leon, Javier
    ANTONIE VAN LEEUWENHOEK INTERNATIONAL JOURNAL OF GENERAL AND MOLECULAR MICROBIOLOGY, 2022, 115 (03): : 421 - 431
  • [30] The First Genomic and Proteomic Characterization of a Deep-Sea Sulfate Reducer: Insights into the Piezophilic Lifestyle of Desulfovibrio piezophilus
    Pradel, Nathalie
    Ji, Boyang
    Gimenez, Gregory
    Talla, Emmanuel
    Lenoble, Patricia
    Garel, Marc
    Tamburini, Christian
    Fourquet, Patrick
    Lebrun, Regine
    Bertin, Philippe
    Denis, Yann
    Pophillat, Matthieu
    Barbe, Valerie
    Ollivier, Bernard
    Dolla, Alain
    PLOS ONE, 2013, 8 (01):