An inpainting and super resolution method for image mapping spectrometer

被引:0
作者
Shao, Haotian [1 ]
Su, Lijuan [1 ]
Liu, Anqi [1 ,2 ]
Yuan, Yan [1 ]
Jiang, Yi [1 ]
机构
[1] Beihang Univ, Key Lab Precis Opto Mech Technol, Beijing 100191, Peoples R China
[2] Chinese Acad Sci, Aerospace Informat Res Inst, Beijing 100094, Peoples R China
来源
SPIE FUTURE SENSING TECHNOLOGIES 2023 | 2023年 / 12327卷
基金
中国国家自然科学基金;
关键词
hyperspectral imaging; super resolution; image inpainting; image mapping spectrometry; deep learning;
D O I
10.1117/12.2666359
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Image Mapping Spectrometry (IMS) is a compact snapshot hyperspectral imaging technology. However, the image mapper used in the IMS causes degradation of the reconstructed spectral datacube, such as, low spatial resolution, missing areas and stripe artifacts. In this paper, we propose an end-to-end deep learning method to jointly inpainting and super resolution the restored spectral images of the IMS. The method includes an image inpainting network, which is designed to correct the nonuniform intensity and missing data, and an image super resolution network, which aims to enhance the spatial resolution of images. In addition, a local nonuniformity correction method is proposed to preprocess the IMS images. Simulation and experimental results demonstrate the effectiveness of the proposed method.
引用
收藏
页数:10
相关论文
共 20 条
  • [1] Hyperspectral Remote Sensing Data Analysis and Future Challenges
    Bioucas-Dias, Jose M.
    Plaza, Antonio
    Camps-Valls, Gustavo
    Scheunders, Paul
    Nasrabadi, Nasser M.
    Chanussot, Jocelyn
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE, 2013, 1 (02) : 6 - 36
  • [2] Development of a fast calibration method for image mapping spectrometry
    Cui, Qi
    Park, Jongchan
    Iyer, Rishyashring R.
    Zurauskas, Mantas
    Boppart, Stephen A.
    Smith, R. Theodore
    Gao, Liang
    [J]. APPLIED OPTICS, 2020, 59 (20) : 6062 - 6069
  • [3] Compact Image Slicing Spectrometer (ISS) for hyperspectral fluorescence microscopy
    Gao, Liang
    Kester, Robert T.
    Tkaczyk, Tomasz S.
    [J]. OPTICS EXPRESS, 2009, 17 (15): : 12293 - 12308
  • [4] Review of snapshot spectral imaging technologies
    Hagen, Nathan
    Kudenov, Michael W.
    [J]. OPTICAL ENGINEERING, 2013, 52 (09)
  • [5] Coordinate Attention for Efficient Mobile Network Design
    Hou, Qibin
    Zhou, Daquan
    Feng, Jiashi
    [J]. 2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 13708 - 13717
  • [6] From Less to More: Spectral Splitting and Aggregation Network for Hyperspectral Face Super-Resolution
    Jiang, Junjun
    Wang, Chenyang
    Liu, Xianming
    Jiang, Kui
    Ma, Jiayi
    [J]. 2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, CVPRW 2022, 2022, : 266 - 275
  • [7] Development of image mappers for hyperspectral biomedical imaging applications
    Kester, Robert T.
    Gao, Liang
    Tkaczyk, Tomasz S.
    [J]. APPLIED OPTICS, 2010, 49 (10) : 1886 - 1899
  • [8] Kingma DP, 2014, ADV NEUR IN, V27
  • [9] Hybrid non-sequential modeling of an image mapping spectrometer
    Liu, Anqi
    Yuan, Yan
    Su, Lijuan
    Meng, Xiangxiang
    Shao, Haotian
    Jiang, Yi
    [J]. APPLIED OPTICS, 2022, 61 (17) : 5260 - 5268
  • [10] Accurate ray tracing model of an imaging system based on image mapper
    Liu, Anqi
    Su, Lijuan
    Yuan, Yan
    Ding, Xiaoming
    [J]. OPTICS EXPRESS, 2020, 28 (02) : 2251 - 2262