Z3 and (xZ3)3 symmetry protected topological paramagnets

被引:2
作者
Topchyan, Hrant [1 ]
Iugov, Vasilii [2 ,3 ]
Mirumyan, Mkhitar [1 ]
Khachatryan, Shahane [1 ]
Hakobyan, Tigran [1 ,4 ]
Sedrakyan, Tigran [5 ]
机构
[1] Yerevan Phys Inst, Alihkanyan Natl Lab, Alikhanian Br 2, Yerevan 0036, Armenia
[2] SUNY Stony Brook, Simons Ctr Geometry & Phys, Stony Brook, NY 11794 USA
[3] SUNY Stony Brook, C N Yang Inst Theoret Phys, Stony Brook, NY 11794 USA
[4] Yerevan State Univ, Alex Manoogian 1, Yerevan 0025, Armenia
[5] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA
关键词
Discrete Symmetries; Duality in Gauge Field Theories; Lattice Quantum Field Theory; Topological States of Matter; ENTANGLEMENT ENTROPY; MODELS; PHASES; ORDER;
D O I
10.1007/JHEP12(2023)199
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We identify two-dimensional three-state Potts paramagnets with gapless edge modes on a triangular lattice protected by (xZ(3))(3) equivalent to Z(3) x Z(3 )x Z(3) symmetry and smaller Z(3 )symmetry. We derive microscopic models for the gapless edge, uncover their symmetries and analyze the conformal properties. We study the properties of the gapless edge by employing the numerical density-matrix renormalization group (DMRG) simulation and exact diagonalization. We discuss the corresponding conformal field theory, its central charge, and the scaling dimension of the corresponding primary field. We argue, that the low energy limit of our edge modes defined by the SUk(3)/SUk(2) coset conformal field theory with the level k = 2. The discussed two-dimensional models realize a variety of symmetry-protected topological phases, opening a window for studies of the unconventional quantum criticalities between them.
引用
收藏
页数:36
相关论文
共 88 条
[31]   Universal Finite-Size Scaling around Topological Quantum Phase Transitions [J].
Gulden, Tobias ;
Janas, Michael ;
Wang, Yuting ;
Kamenev, Alex .
PHYSICAL REVIEW LETTERS, 2016, 116 (02)
[32]   Colloquium: Topological insulators [J].
Hasan, M. Z. ;
Kane, C. L. .
REVIEWS OF MODERN PHYSICS, 2010, 82 (04) :3045-3067
[33]   Twisted quantum double model of topological phases in two dimensions [J].
Hu, Yuting ;
Wan, Yidun ;
Wu, Yong-Shi .
PHYSICAL REVIEW B, 2013, 87 (12)
[34]   Quantum spin Hall effect in graphene [J].
Kane, CL ;
Mele, EJ .
PHYSICAL REVIEW LETTERS, 2005, 95 (22)
[35]   Z2 topological order and the quantum spin Hall effect -: art. no. 146802 [J].
Kane, CL ;
Mele, EJ .
PHYSICAL REVIEW LETTERS, 2005, 95 (14)
[36]   Fermionic SPT phases in higher dimensions and bosonization [J].
Kapustin, Anton ;
Thorngren, Ryan .
JOURNAL OF HIGH ENERGY PHYSICS, 2017, (10)
[37]   Fermionic symmetry protected topological phases and cobordisms [J].
Kapustin, Anton ;
Thorngren, Ryan ;
Turzillo, Alex ;
Wang, Zitao .
JOURNAL OF HIGH ENERGY PHYSICS, 2015, (12) :1-21
[38]   Anomalies in bosonic symmetry-protected topological edge theories: Connection to F symbols and a method of calculation [J].
Kawagoe, Kyle ;
Levin, Michael .
PHYSICAL REVIEW B, 2021, 104 (11)
[39]   INTRODUCTION TO LATTICE GAUGE-THEORY AND SPIN SYSTEMS [J].
KOGUT, JB .
REVIEWS OF MODERN PHYSICS, 1979, 51 (04) :659-713
[40]   Categories of quantum liquids I [J].
Kong, Liang ;
Zheng, Hao .
JOURNAL OF HIGH ENERGY PHYSICS, 2022, 2022 (08)