Investigating Laser-Induced Periodic Surface Structures (LIPSS) Formation in Silicon and Their Impact on Surface-Enhanced Raman Spectroscopy (SERS)

被引:5
|
作者
Vaghasiya, Hardik [1 ,2 ]
Miclea, Paul-Tiberiu [1 ,2 ]
机构
[1] Martin Luther Univ Halle Wittenberg, ZIK Sili Nano, Halle, Germany
[2] Fraunhofer Ctr Silicon Photovolta CSP, Halle, Germany
来源
OPTICS | 2023年 / 4卷 / 04期
关键词
laser-induced periodic surface structures (LIPSS); surface-enhanced Raman spectroscopy (SERS); femtosecond laser; ultrashort laser; low-spatial-frequency LIPSS (LSFL); high-spatial-frequency LIPSS (HSFL); localized surface plasmon resonance (LSPR); surface plasmon polaritons (SPPs); nanostructuring; LINE-WIDTHS; SUBWAVELENGTH; MODULATIONS; SUBSTRATE; ARRAYS;
D O I
10.3390/opt4040039
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Laser-induced periodic surface structures (LIPSS) have gained significant attention due to their ability to modify the surface morphology of materials at the micro-nanoscale and show great promise for surface functionalization applications. In this study, we specifically investigate the formation of LIPSS in silicon substrates and explore their impact on surface-enhanced Raman spectroscopy (SERS) applications. This study reveals a stepwise progression of LIPSS formation in silicon, involving three distinct stages of LIPSS: (1) integrated low-spatial-frequency LIPSS (LSFL) and high-spatial-frequency LIPSS (HSFL), (2) principally LSFL and, (3) LSFL at the edge of the irradiated spot, elucidating the complex interplay between laser fluence, pulse number, and resulting surface morphology. Furthermore, from an application standpoint, these high-quality multi-scale periodic patterns lead to the next step of texturing the entire silicon surface with homogeneous LIPSS for SERS application. The potential of LIPSS-fabricated silicon substrates for enhancing SERS performance is investigated using thiophenol as a test molecule. The results indicate that the Au-coated combination of LSFL and HSFL substrates showcased the highest enhancement factor (EF) of 1.38x106. This pronounced enhancement is attributed to the synergistic effects of localized surface plasmon resonance (LSPR) and surface plasmon polaritons (SPPs), intricately linked to HSFL and LSFL characteristics. These findings contribute to our understanding of LIPSS formation in silicon and their applications in surface functionalization and SERS, paving the way for sensing platforms.
引用
收藏
页码:538 / 550
页数:13
相关论文
共 50 条
  • [31] Surface-enhanced Raman spectroscopy and nanogeometry: The plasmonic origin of SERS
    Lee, Seung Joon
    Guan, Zhiqiang
    Xu, Hongxing
    Moskovits, Martin
    JOURNAL OF PHYSICAL CHEMISTRY C, 2007, 111 (49): : 17985 - 17988
  • [32] Surface-Enhanced Raman Spectroscopy (SERS) Analysis of Several Cannabinoids
    Dowgiallo, Anne-Marie
    SPECTROSCOPY, 2020, 35 : 50 - 50
  • [33] Micro and nanocapsules as supports for Surface-Enhanced Raman Spectroscopy (SERS)
    Renata, Jastrzab
    PHYSICAL SCIENCES REVIEWS, 2016, 1 (01)
  • [34] A Review: Nanofabrication of Surface-Enhanced Raman Spectroscopy (SERS) Substrates
    Sun, Xin
    Li, Hao
    CURRENT NANOSCIENCE, 2016, 12 (02) : 175 - 183
  • [35] Materials removal mechanism of single crystalline SiC with laser-induced periodic surface structures (LIPSS)
    Chen, Pei
    Chi, Zhuangzhuang
    Pan, Rui
    Qin, Fei
    Qiu, Pei
    Huang, Jiaxu
    Xu, Shaolin
    JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2023, 321
  • [36] Surface-enhanced Raman spectroscopy (SERS) in cotton fabrics analysis
    Puchowicz, Dorota
    Giesz, Patrycja
    Kozanecki, Marcin
    Cieslak, Malgorzata
    TALANTA, 2019, 195 : 516 - 524
  • [37] Femtosecond laser-induced oxidation in the formation of periodic surface structures
    Florian, Camilo
    Deziel, Jean-Luc
    Kirner, Sabrina, V
    Siegel, Jan
    Bonse, Joern
    2021 CONFERENCE ON LASERS AND ELECTRO-OPTICS EUROPE & EUROPEAN QUANTUM ELECTRONICS CONFERENCE (CLEO/EUROPE-EQEC), 2021,
  • [38] The Role of the Laser-Induced Oxide Layer in the Formation of Laser-Induced Periodic Surface Structures
    Florian, Camilo
    Deziel, Jean-Luc
    Kirner, Sabrina V.
    Siegel, Jan
    Bonse, Joern
    NANOMATERIALS, 2020, 10 (01)
  • [39] Toward the formation of crossed laser-induced periodic surface structures
    Deziel, Jean-Luc
    Dumont, Joey
    Gagnon, Denis
    Dube, Louis J.
    Messaddeq, Sandra H.
    Messaddeq, Younes
    JOURNAL OF OPTICS, 2015, 17 (07)
  • [40] Surface functionalization by laser-induced periodic surface structures
    Florian, Camilo
    Kirner, Sabrina V.
    Krueger, Joerg
    Bonse, Joern
    JOURNAL OF LASER APPLICATIONS, 2020, 32 (02)