Transcriptional suppression of sphingolipid catabolism controls pathogen resistance in C. elegans

被引:3
作者
Nasrallah, Mohamad A. [1 ]
Peterson, Nicholas D. [1 ]
Szumel, Elizabeth S. [1 ]
Liu, Pengpeng [2 ]
Page, Amanda L. [1 ]
Tse, Samantha Y. [1 ]
Wani, Khursheed A. [1 ]
Tocheny, Claire E. [1 ]
Pukkila-Worley, Read [1 ]
机构
[1] Univ Massachusetts, Chan Med Sch, Dept Med, Program Innate Immun,Div Infect Dis & Immunol, Worcester, MA 01605 USA
[2] Univ Massachusetts, Chan Med Sch, Dept Mol Cell & Canc Biol, Worcester, MA USA
关键词
CAENORHABDITIS-ELEGANS; NUCLEAR RECEPTORS; IMMUNE-RESPONSE; NEMATODE; METABOLISM; CERAMIDE; ROLES; SPHINGOSINE-1-PHOSPHATE; SPHINGOSINE; CONTRIBUTES;
D O I
10.1371/journal.ppat.1011730
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Sphingolipids are required for diverse biological functions and are degraded by specific catabolic enzymes. However, the mechanisms that regulate sphingolipid catabolism are not known. Here we characterize a transcriptional axis that regulates sphingolipid breakdown to control resistance against bacterial infection. From an RNAi screen for transcriptional regulators of pathogen resistance in the nematode C. elegans, we identified the nuclear hormone receptor nhr-66, a ligand-gated transcription factor homologous to human hepatocyte nuclear factor 4. Tandem chromatin immunoprecipitation-sequencing and RNA sequencing experiments revealed that NHR-66 is a transcriptional repressor, which directly targets sphingolipid catabolism genes. Transcriptional de-repression of two sphingolipid catabolic enzymes in nhr-66 loss-of-function mutants drives the breakdown of sphingolipids, which enhances host susceptibility to infection with the bacterial pathogen Pseudomonas aeruginosa. These data define transcriptional control of sphingolipid catabolism in the regulation of cellular sphingolipids, a process that is necessary for pathogen resistance.
引用
收藏
页数:22
相关论文
共 87 条
[1]  
Abe A., 2013, Lipids Carbohydr Membr Membr Proteins: Artic Titles: S, P287, DOI DOI 10.1016/B978-0-12-378630-2.00462-X
[2]   Genetic defects in the sphingolipid degradation pathway and their effects on microglia in neurodegenerative disease [J].
Allende, Maria L. ;
Zhu, Hongling ;
Kono, Mari ;
Hoachlander-Hobby, Lila E. ;
Huso, Vienna L. ;
Proia, Richard L. .
CELLULAR SIGNALLING, 2021, 78
[3]   Immunometabolism in Caenorhabditis elegans [J].
Anderson, Sarah M. ;
Pukkila-Worley, Read .
PLOS PATHOGENS, 2020, 16 (10)
[4]   The fatty acid oleate is required for innate immune activation and pathogen defense in Caenorhabditis elegans [J].
Anderson, Sarah M. ;
Cheesman, Hilary K. ;
Peterson, Nicholas D. ;
Salisbury, J. Elizabeth ;
Soukas, Alexander A. ;
Pukkila-Worley, Read .
PLOS PATHOGENS, 2019, 15 (06)
[5]   Sphingosine-1-Phosphate Signaling in Immune Cells and Inflammation: Roles and Therapeutic Potential [J].
Aoki, Masayo ;
Aoki, Hiroaki ;
Ramanathan, Rajesh ;
Hait, Nitai C. ;
Takabe, Kazuaki .
MEDIATORS OF INFLAMMATION, 2016, 2016
[6]   Functional modularity of nuclear hormone receptors in a Caenorhabditis elegans metabolic gene regulatory network [J].
Arda, H. Efsun ;
Taubert, Stefan ;
MacNeil, Lesley T. ;
Conine, Colin C. ;
Tsuda, Ben ;
Van Gilst, Marc ;
Sequerra, Reynaldo ;
Doucette-Stamm, Lynn ;
Yamamoto, Keith R. ;
Walhout, Albertha J. M. .
MOLECULAR SYSTEMS BIOLOGY, 2010, 6
[7]   Lysosomes as dynamic regulators of cell and organismal homeostasis [J].
Ballabio, Andrea ;
Bonifacino, Juan S. .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2020, 21 (02) :101-118
[8]  
Bielawski J, 2010, ADV EXP MED BIOL, V688, P46
[9]   Ceramide-enriched membrane domains [J].
Bollinger, CR ;
Teichgräber, V ;
Gulbins, E .
BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH, 2005, 1746 (03) :284-294
[10]   Near-optimal probabilistic RNA-seq quantification [J].
Bray, Nicolas L. ;
Pimentel, Harold ;
Melsted, Pall ;
Pachter, Lior .
NATURE BIOTECHNOLOGY, 2016, 34 (05) :525-527