Precipitation strengthening of Cu-Ni-Si-based alloys: Experimental and computational insights

被引:13
作者
Nam, Hyo Moon [1 ]
Lee, Haeun [2 ]
Kim, Hyokyeong [2 ]
Lee, Jung Gu [1 ]
Kim, Jiwoong [2 ,3 ]
机构
[1] Univ Ulsan, Sch Mat Sci & Engn, Ulsan 680749, South Korea
[2] Soongsil Univ, Dept Mat Sci & Engn, Seoul 06978, South Korea
[3] Soongsil Univ, Dept Green Chem & Mat Engn, Seoul 06978, South Korea
来源
JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T | 2023年 / 27卷
基金
新加坡国家研究基金会;
关键词
Cu-Ni-Si-Co alloy; Precipitation; Interfacial energy; Hardness; Electrical conductivity; Ab initio calculation; AB-INITIO SIMULATIONS; ELECTRICAL-CONDUCTIVITY; MICROSTRUCTURE; CO; HARDNESS; BEHAVIOR; VASP;
D O I
10.1016/j.jmrt.2023.11.019
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The effects of interfacial energy on precipitation behavior and physical properties of Cu-Ni-Si-(Co) alloys were investigated. The Cu-1.3Ni-0.3Si and Cu-1.3Ni-0.6Si-1.0Co alloys (in weight %) were prepared by combined cold-rolling and aging processes. The addition of Co promoted the formation of (Ni,Co)2Si by replacing Ni with Co in Ni2Si. Ab initio calculations demonstrated that the small addition of Co considerably reduced the interfacial energy between the Cu matrix and (Ni,Co)2Si, which effectively decreased the activation energy for precipitation. As a result, the precipitation of fine rod-shaped (Ni,Co)2Si was accelerated during the aging process and the number density of the precipitates increased up to 9.0 x 1010 cm-2. The nano-scale (Ni,Co)2Si precipitates with an average size of 13.5 nm strengthened the alloy properly through the Orowan mechanism without much loss of electrical conductivity. The maximum hardness and electrical conductivity were 220 Hv and 51 % International Annealed Copper Standard, respectively, for the Cu-1.3Ni-0.6Si-1.0Co alloy aged for 4 h at 420 degrees C.
引用
收藏
页码:5372 / 5379
页数:8
相关论文
共 50 条
[41]   Microstructure and properties of high-strength Cu–Ni–Si–(Ti) alloys [J].
Yi-Hai Yang ;
Sheng-Yao Li ;
Zhen-Shan Cui ;
Zhou Li ;
Yun-Ping Li ;
Qian Lei .
Rare Metals, 2021, 40 :3251-3260
[42]   Strengthening of Cu-Ni-Si alloy using high-pressure torsion and aging [J].
Lee, Seungwon ;
Matsunaga, Hirotaka ;
Sauvage, Xavier ;
Horita, Zenji .
MATERIALS CHARACTERIZATION, 2014, 90 :62-70
[43]   Low cycle fatigue behaviour of a precipitation hardened Cu-Ni-Si alloy [J].
Delbove, Maxime ;
Vogt, Jean-Bernard ;
Bouquerel, Jeremie ;
Soreau, Thierry ;
Primaux, Francois .
INTERNATIONAL JOURNAL OF FATIGUE, 2016, 92 :313-320
[44]   Influence of pre-deformation on the precipitation hardening in Cu-Ni-Si alloy [J].
Donoso, Eduardo ;
Jesus Dianez, Ma ;
Criado, Jose M. .
REVISTA DE METALURGIA, 2019, 55 (04)
[45]   Microstructure evolution and composite strengthening mechanism during solid solution and aging treatment for Cu-Ni-Co-Si sheet [J].
Zhu, Xuetong ;
Chen, Huiqin ;
Zhang, Zhonghua ;
Yan, Bixiao ;
Wu, Gang .
MATERIALS TODAY COMMUNICATIONS, 2024, 40
[46]   INFLUENCE OF LOW TEMPERATURE CLUSTERING ON STRENGTHENING PRECIPITATION IN Al-Mg-Si ALLOYS [J].
Poznak, Alex ;
Sanders, Paul .
LIGHT METALS 2016, 2016, :237-243
[47]   Investigation of the mechanical properties of TiC particle-reinforced Al-Cu alloys: Insights into interface precipitation mechanisms and strengthening effects [J].
Zhao, Dahong ;
Xiao, Zhengbing ;
Wen, Jinchuan ;
Wang, Xucheng ;
Dai, Zhijie ;
Xiao, Sunhang .
JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2024, 31 :1036-1043
[48]   The Effect of Iron on Precipitation Hardening in the Cu-Ni-Mn Alloys [J].
Sukhova, O., V .
PHYSICS AND CHEMISTRY OF SOLID STATE, 2021, 22 (03) :487-493
[49]   Microstructure and properties of high-strength Cu-Ni-Si-(Ti) alloys [J].
Yang, Yi-Hai ;
Li, Sheng-Yao ;
Cui, Zhen-Shan ;
Li, Zhou ;
Li, Yun-Ping ;
Lei, Qian .
RARE METALS, 2021, 40 (11) :3251-3260
[50]   Effect of V addition on hardness and electrical conductivity in Cu-Ni-Si alloys [J].
S. Z. Han ;
J. H. Gu ;
J. H. Lee ;
Z. P. Que ;
J. H. Shin ;
S. H. Lim ;
S. S. Kim .
Metals and Materials International, 2013, 19 :637-641